How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities

2012 ◽  
Vol 57 (5) ◽  
pp. 969-981 ◽  
Author(s):  
MARIA ALP ◽  
IRENE KELLER ◽  
ANJA MARIE WESTRAM ◽  
CHRISTOPHER T. ROBINSON
Coral Reefs ◽  
2021 ◽  
Author(s):  
Felipe Torquato ◽  
Jessica Bouwmeester ◽  
Pedro Range ◽  
Alyssa Marshell ◽  
Mark A. Priest ◽  
...  

AbstractCurrent seawater temperatures around the northeastern Arabian Peninsula resemble future global forecasts as temperatures > 35 °C are commonly observed in summer. To provide a more fundamental aim of understanding the structure of wild populations in extreme environmental conditions, we conducted a population genetic study of a widespread, regional endemic table coral species, Acropora downingi, across the northeastern Arabian Peninsula. A total of 63 samples were collected in the southern Arabian/Persian Gulf (Abu Dhabi and Qatar) and the Sea of Oman (northeastern Oman). Using RAD-seq techniques, we described the population structure of A. downingi across the study area. Pairwise G’st and distance-based analyses using neutral markers displayed two distinct genetic clusters: one represented by Arabian/Persian Gulf individuals, and the other by Sea of Oman individuals. Nevertheless, a model-based method applied to the genetic data suggested a panmictic population encompassing both seas. Hypotheses to explain the distinctiveness of phylogeographic subregions in the northeastern Arabian Peninsula rely on either (1) bottleneck events due to successive mass coral bleaching, (2) recent founder effect, (3) ecological speciation due to the large spatial gradients in physical conditions, or (4) the combination of seascape features, ocean circulation and larval traits. Neutral markers indicated a slightly structured population of A. downingi, which exclude the ecological speciation hypothesis. Future studies across a broader range of organisms are required to furnish evidence for existing hypotheses explaining a population structure observed in the study area. Though this is the most thermally tolerant acroporid species worldwide, A. downingi corals in the Arabian/Persian Gulf have undergone major mortality events over the past three decades. Therefore, the present genetic study has important implications for understanding patterns and processes of differentiation in this group, whose populations may be pushed to extinction as the Arabian/Persian Gulf warms.


Parasitology ◽  
2013 ◽  
Vol 140 (9) ◽  
pp. 1061-1069 ◽  
Author(s):  
IRIS I. LEVIN ◽  
PATRICIA G. PARKER

SUMMARYParasites often have shorter generation times and, in some cases, faster mutation rates than their hosts, which can lead to greater population differentiation in the parasite relative to the host. Here we present a population genetic study of two ectoparasitic flies, Olfersia spinifera and Olfersia aenescens compared with their respective bird hosts, great frigatebirds (Fregata minor) and Nazca boobies (Sula granti). Olfersia spinifera is the vector of a haemosporidian parasite, Haemoproteus iwa, which infects frigatebirds throughout their range. Interestingly, there is no genetic differentiation in the haemosporidian parasite across this range despite strong genetic differentiation between Galapagos frigatebirds and their non-Galapagos conspecifics. It is possible that the broad distribution of this one H. iwa lineage could be facilitated by movement of infected O. spinifera. Therefore, we predicted more gene flow in both fly species compared with the bird hosts. Mitochondrial DNA sequence data from three genes per species indicated that despite marked differences in the genetic structure of the bird hosts, gene flow was very high in both fly species. A likely explanation involves non-breeding movements of hosts, including movement of juveniles, and movement by adult birds whose breeding attempt has failed, although we cannot rule out the possibility that closely related host species may be involved.


2020 ◽  
Vol 143 ◽  
pp. 111915 ◽  
Author(s):  
Mohammad Mohebi Anabat ◽  
Hossein Riahi ◽  
Masoud Sheidai ◽  
Fahimeh Koohdar

Heredity ◽  
2006 ◽  
Vol 97 (1) ◽  
pp. 38-45 ◽  
Author(s):  
C Kerdelhué ◽  
E Magnoux ◽  
F Lieutier ◽  
A Roques ◽  
J Rousselet

Sign in / Sign up

Export Citation Format

Share Document