scholarly journals Zinc finger domain of Snail functions as a nuclear localization signal for importin β-mediated nuclear import pathway

2005 ◽  
Vol 10 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Hideki Yamasaki ◽  
Toshihiro Sekimoto ◽  
Tadashi Ohkubo ◽  
Tsutomu Douchi ◽  
Yukihiro Nagata ◽  
...  
2008 ◽  
Vol 17 (22) ◽  
pp. 3459-3473 ◽  
Author(s):  
Minoru Hatayama ◽  
Tadashi Tomizawa ◽  
Kumiko Sakai-Kato ◽  
Patrice Bouvagnet ◽  
Shingo Kose ◽  
...  

1995 ◽  
Vol 108 (4) ◽  
pp. 1325-1332 ◽  
Author(s):  
E. Duverger ◽  
C. Pellerin-Mendes ◽  
R. Mayer ◽  
A.C. Roche ◽  
M. Monsigny

The nuclear import of many proteins depends on a short peptide sequence called the nuclear localization signal. However, glycosylated proteins, which lack such a nuclear localization signal, upon their injection into the cytosol by electroporation, enter the nucleus in a sugar-dependent manner. This paper brings new insights on the mechanism of this process, based on a study of neoglycoprotein nuclear uptake by digitonin-permeabilized cells. The nuclear import of neoglycoproteins is energy dependent: it does not occur when cells are maintained at 4 degrees C or when cells are ATP-depleted by treatment with apyrase. The nuclear import of neoglycoproteins occurs through the nuclear pore: it is inhibited by preincubation of cells with wheat germ agglutinin, a lectin which binds the nuclear pore glycoproteins and blocks the translocation step of nuclear localization signal bearing proteins through the nuclear pore. Furthermore, the nuclear import of neoglycoproteins does not use the pathway of nuclear localization signal bearing proteins: nuclear import of nuclear localization signal bearing proteins depends on cytosolic factors and is inhibited by treatment of cells with N-ethylmaleimide, while the nuclear import of neoglycoproteins neither requires added cytosolic factors nor is sensitive to alkylation by N-ethylmaleimide. In addition, upon incubation in the presence of a large excess of nuclear localization signal bearing protein, the nuclear import of neoglycoproteins is not inhibited.


1994 ◽  
Vol 107 (7) ◽  
pp. 1807-1816 ◽  
Author(s):  
C. Kambach ◽  
I.W. Mattaj

Experiments investigating the nuclear import of the U2 snRNP-specific B'' protein (U2B'') are presented. U2B'' nuclear transport is shown to be able to occur independently of binding to U2 snRNA. The central segment of the protein (amino acids 90–146) encodes an unusual nuclear localization signal (NLS) that is related to that of the U1 snRNP-specific A protein. However, nuclear import of U2B'' does not depend on this NLS. Sequences in the N-terminal RNP motif of the protein are sufficient to direct nuclear transport, and evidence is presented that the interaction of U2B'' with the U2A' protein mediates this effect. This suggests that U2B'' can ‘piggy-back’ to the nucleus in association with U2A’, and thus be imported to the nucleus by two different mechanisms. U2A' nuclear transport, on the other hand, can occur independently of both U2B'' binding and of U2 snRNA.


1993 ◽  
Vol 105 (2) ◽  
pp. 389-395
Author(s):  
X. Li ◽  
L.D. Etkin

Xenopus nuclear factor 7 (xnf7) is a nuclear phosphoprotein that is encoded by a member of a novel zinc finger gene family and likely functions as a transcription factor. It possesses a nuclear localization signal (NLS) similar to the bipartite basic NLS of nucleoplasmin, but unlike nucleoplasmin, which re-enters nuclei immediately after fertilization, xnf7 remains cytoplasmic until the mid-blastula transition (MBT). We have measured the accumulation of injected labeled xnf7 protein or protein produced from synthetic xnf7 transcripts in the oocyte nuclei (GV). The data show that the NLS of xnf7 functions efficiently in oocytes. Mutations in either of the bipartite basic domains of the xnf7 NLS inhibit nuclear accumulation, while mutations in the spacer sequences have no effect. The xnf7 NLS linked to pyruvate kinase directs the efficient accumulation of this protein into nuclei of early embryos prior to the MBT. These data suggest that retention of the xnf7 protein during development is the result of a mechanism that interferes with the xnf7 NLS function.


1998 ◽  
Vol 159 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Z Yu ◽  
CH Lee ◽  
C Chinpaisal ◽  
LN Wei

The orphan nuclear receptor TR2 and its truncated isoform deleted in the ligand binding domain (LBD) were localized exclusively in the nuclei as revealed by two methods of detection. An anti-hemagglutinin (HA) antibody detected specific nuclear localization of HA-tagged receptors and the green fluorescent protein (GFP)-tagged receptors were found to be distributed in the nuclei of living cells. By deletion analyses, the sequence responsible for targeting this receptor into the nucleus was defined. A stretch of 20 amino acid residues (KDCVINKHHRNRCQYCRLQR) within the second zinc-finger of this receptor is required for its nuclear localization and this signal is constitutively active. No nuclear localization signal was found in the N-terminus or the LBD. The GFP-tagged receptor remained biologically active, as evidenced by its repressive activity on the reporter that carried a binding site for this receptor, a direct repeat-5 (DR5). An electrophoretic mobility shift assay was performed to characterize the binding property of TR2 and its truncated isoform. TR2 bound to the DR5 as dimers whereas its truncated isoform bound as monomers.


2006 ◽  
Vol 26 (13) ◽  
pp. 4882-4894 ◽  
Author(s):  
Alexis Verger ◽  
Kate G. R. Quinlan ◽  
Linda A. Crofts ◽  
Stefania Spanò ◽  
Daniela Corda ◽  
...  

ABSTRACT The C-terminal binding protein (CtBP) family includes four proteins (CtBP1 [CtBP1-L], CtBP3/BARS [CtBP1-S], CtBP2, and RIBEYE) which are implicated both in transcriptional repression and in intracellular trafficking. However, the precise mechanisms by which different CtBP proteins are targeted to different subcellular regions remains unknown. Here, we report that the nuclear import of the various CtBP proteins and splice isoforms is differentially regulated. We show that CtBP2 contains a unique nuclear localization signal (NLS) located within its N-terminal region, which contributes to its nuclear accumulation. Using heterokaryon assays, we show that CtBP2 is capable of shuttling between the nucleus and cytoplasm of the cell. Moreover, CtBP2 can heterodimerize with CtBP1-L and CtBP1-S and direct them to the nucleus. This effect strongly depends on the CtBP2 NLS. PXDLS motif-containing transcription factors, such as BKLF, that bind CtBP proteins can also direct them to the nucleus. We also report the identification of a splice isoform of CtBP2, CtBP2-S, that lacks the N-terminal NLS and localizes to the cytoplasm. Finally, we show that mutation of the CtBP NADH binding site impairs the ability of the proteins to dimerize and to associate with BKLF. This reduces the nuclear accumulation of CtBP1. Our results suggest a model in which the nuclear localization of CtBP proteins is influenced by the CtBP2 NLS, by binding to PXDLS motif partner proteins, and through the effect of NADH on CtBP dimerization.


Sign in / Sign up

Export Citation Format

Share Document