scholarly journals A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media

2006 ◽  
Vol 167 (1) ◽  
pp. 253-270 ◽  
Author(s):  
M. de Kool ◽  
N. Rawlinson ◽  
M. Sambridge
2012 ◽  
Vol 52 (10) ◽  
pp. 2587-2598 ◽  
Author(s):  
Simon Cross ◽  
Massimo Baroni ◽  
Laura Goracci ◽  
Gabriele Cruciani

2019 ◽  
Vol 221 ◽  
pp. 01021
Author(s):  
Aleksandr Kraus ◽  
Evgeny Kraus ◽  
Ivan Shabalin

A two-dimensional and three-dimensional non-stationary problem of the interaction of a homogeneous impactor and a heterogeneous structure made of steel and ceramics and placed in a Kevlar pocket is considered. The model of the human body is a plate of gelatine with cylindrical inserts-imitators of human bones. The results of numerical simulation using different approaches for describing heterogeneous media are compared. On the basis of direct numerical simulation, it is shown that the gradient armor plate (steel + B4C) has the best weight and size parameters.


2013 ◽  
Vol 19 (3) ◽  
pp. 726-739 ◽  
Author(s):  
P. Bleuet ◽  
G. Audoit ◽  
J.-P. Barnes ◽  
J. Bertheau ◽  
Y. Dabin ◽  
...  

AbstractTomography is a standard and invaluable technique that covers a large range of length scales. It gives access to the inner morphology of specimens and to the three-dimensional (3D) distribution of physical quantities such as elemental composition, crystalline phases, oxidation state, or strain. These data are necessary to determine the effective properties of investigated heterogeneous media. However, each tomographic technique relies on severe sampling conditions and physical principles that require the sample to be adequately shaped. For that purpose, a wide range of sample preparation techniques is used, including mechanical machining, polishing, sawing, ion milling, or chemical techniques. Here, we focus on the basics of tomography that justify such advanced sample preparation, before reviewing and illustrating the main techniques. Performances and limits are highlighted, and we identify the best preparation technique for a particular tomographic scale and application. The targeted tomography techniques include hard X-ray micro- and nanotomography, electron nanotomography, and atom probe tomography. The article mainly focuses on hard condensed matter, including porous materials, alloys, and microelectronics applications, but also includes, to a lesser extent, biological considerations.


2007 ◽  
Vol 24 (3) ◽  
pp. 159-173 ◽  
Author(s):  
Daniel J. Price

AbstractThis paper presents SPLASH, a publicly available interactive visualisation tool for Smoothed Particle Hydrodynamics (SPH) simulations. Visualisation of SPH data is more complicated than for grid-based codes because the data are defined on a set of irregular points and therefore requires a mapping procedure to a two dimensional pixel array. This means that, in practise, many authors simply produce particle plots which offer a rather crude representation of the simulation output. Here we describe the techniques and algorithms which are utilised in SPLASH in order to provide the user with a fast, interactive and meaningful visualisation of one, two and three dimensional SPH results.


2021 ◽  
Vol 89 (1) ◽  
Author(s):  
François Desquilbet ◽  
Jian Cao ◽  
Paul Cupillard ◽  
Ludovic Métivier ◽  
Jean-Marie Mirebeau

2012 ◽  
Vol 5 (9) ◽  
pp. 2261-2276 ◽  
Author(s):  
S. Gimeno García ◽  
T. Trautmann ◽  
V. Venema

Abstract. Handling complexity to the smallest detail in atmospheric radiative transfer models is unfeasible in practice. On the one hand, the properties of the interacting medium, i.e., the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, especially for climate modelling and operational remote-sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications. Three-dimensional radiation models can deal with complex scenarios providing an accurate solution to the radiative transfer. In contrast, one-dimensional models are computationally more efficient, but introduce biases to the radiation results. With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a higher resolution. Performing the radiative transfer within the cloud fields at higher spatial resolution noticeably helps to improve the radiation results. We present a new Monte Carlo model, MoCaRT, that computes the radiative transfer in three-dimensional inhomogeneous atmospheres. The MoCaRT model is validated by comparison with the consensus results of the Intercomparison of Three-Dimensional Radiation Codes (I3RC) project. In the framework of this paper, we aim at characterising cloud heterogeneity effects on radiances and broadband fluxes, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias) and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias). First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic methods greatly reduce or nearly eliminate the reflectivity biases. Secondly, three-dimensional broadband fluxes in the presence of realistic inhomogeneous cloud fields sampled at high spatial resolutions are calculated and compared to their one-dimensional counterparts at coarser resolutions. We found that one-dimensional calculations at coarsely resolved cloudy atmospheres systematically overestimate broadband reflected and absorbed fluxes and underestimate transmitted ones.


Sign in / Sign up

Export Citation Format

Share Document