Patterns of leaf and root regrowth, and allocation of water-soluble carbohydrate reserves following defoliation of plants of prairie grass (Bromus willdenowii Kunth.)

2007 ◽  
Vol 62 (4) ◽  
pp. 497-506 ◽  
Author(s):  
L. R. Turner ◽  
D. J. Donaghy ◽  
P. A. Lane ◽  
R. P. Rawnsley
2006 ◽  
Vol 57 (2) ◽  
pp. 243 ◽  
Author(s):  
L. R. Turner ◽  
D. J. Donaghy ◽  
P. A. Lane ◽  
R. P. Rawnsley

This study investigated the influence of leaf stage-based defoliation interval on water-soluble carbohydrate and nitrogen energy reserve status, regrowth of leaves and roots, and tiller number of cocksfoot (Dactylis glomerata L.) cv. Kara plants up to 24 days (3.5-leaf stage) following defoliation. Treatments were based on defoliation intervals of 1-, 2-, and 4-leaf stages of regrowth, with treatments terminated when the 1-leaf defoliation interval had been completed 4 times, the 2-leaf interval 2 times, and the 4-leaf interval once. Selected plants were destructively harvested prior to commencement of treatments (H0), immediately following cessation of treatments (H1), and at 5 days (H2), 10 days (H3), and 24 days (H4) following H1. Leaf, root, and tiller dry matter yield were determined at each harvest event, as well as tiller number/plant. Levels of water-soluble carbohydrate and nitrogen reserves in plant stubble and roots were determined at each destructive harvest. Initiation and death of daughter tillers were monitored from H0 to the completion of the study. More frequent defoliation of cocksfoot plants resulted in reduced water-soluble carbohydrate assimilation and therefore leaf, root, and tiller dry matter accumulation during the subsequent recovery period. Defoliation at the 1-leaf stage severely limited the regrowth potential of cocksfoot plants, whereas defoliation at the 2-leaf stage was adequate for plant recovery, but did not maximise regrowth. The results of this study showed that a defoliation interval based on the 4-leaf stage maximises water-soluble carbohydrate reserves, tillering, and leaf and root dry matter yields. The priority sequence for allocation of water-soluble carbohydrate reserves followed the order of leaf growth, root growth, and tillering during the regrowth period. Nitrogen energy reserves were found to play a minor role in the regrowth of cocksfoot plants following defoliation.


2001 ◽  
Vol 41 (2) ◽  
pp. 261 ◽  
Author(s):  
W. J. Fulkerson ◽  
D. J. Donaghy

This review examines the use of changes in soluble carbohydrate reserves, and the onset of senescence in ryegrass (Lolium spp.), as key criteria for successfully managing an intermittent grazing system for dairy cattle. Ryegrass is a ‘3-leaf ’ plant; that is, only about 3 green leaves/tiller exist at any one time with the initiation of a new leaf coinciding with senescence of the oldest fourth leaf. Thus, grazing pasture older than 3 leaves/tiller will not only lead to wastage of pasture but also the senescent material will reduce overall quality of herbage. Based on this, the time taken for 3 new leaves/tiller to regrow sets the maximum grazing interval. On the other hand, in a well-utilised dairy pasture, most ryegrass leaf has been removed and the plant relies on stored water-soluble carbohydrate reserves to grow new shoots and hence regain photosynthetic capacity. If the concentration of water-soluble carbohydrates is inadequate, because there has been insufficient time to replenish in the previous inter-grazing period, regrowth will be suppressed and this may also affect persistence in the longer term. Immediately after grazing, water-soluble carbohydrate reserves decline as they are used to regrow new shoots, and root growth stops. It is not until about 3/4 of a new leaf/tiller has regrown that the plant has adequate photosynthetic capacity for growth and maintenance and only then does water-soluble carbohydrate replenishment and root growth commence. Studies have shown that subsequent regrowth is suppressed if plants are redefoliated before the 2 leaves/tiller stage of regrowth. Also, the levels of potassium and nitrogen (as nitrates and other non-protein nitrogen products) may be very high and cause metabolic problems in stock grazing such pasture. Thus, replenishment of water-soluble carbohydrate reserves sets the minimum grazing interval at 2 leaves/tiller. The rate of accumulation of water-soluble carbohydrates in the plant is a function of input through photosynthesis (source) and output to growth and respiration (sinks). Thus, apart from grazing interval (which sets the time to replenish water-soluble carbohydrate plant reserves), water-soluble carbohydrate storage will be influenced by incoming solar radiation (cloud cover, day length, pasture canopy density) and energy needs of the plant through respiration (temperature, canopy mass) and growth. Relating grazing interval to leaf number places the emphasis on the readiness of plants to be grazed rather than on the animals’ requirements, with leaf appearance interval depending primarily on ambient temperature. This allows grazing interval to be expressed in a similar morphological stage of growth, irrespective of season or location. Setting grazing interval on these 2 criteria has been shown to maximise growth and persistence of ryegrass and optimise the levels of most nutrients in pasture required by dairy cattle including protein, water-soluble carbohydrates, calcium, potassium and magnesium. Metabolisable energy and fibre do not change appreciably up to the 3 leaves/tiller stage of regrowth. On the other hand, grazing pasture before 2 leaves/tiller not only retards regrowth and reduces persistence, it provides forage too high in potassium and protein (nitrates) and too low in water-soluble carbohydrates for dairy cattle.


Sign in / Sign up

Export Citation Format

Share Document