Technical note: Energy indicator recorder: a general purpose control box: Use of a single phase wattmeter with a wide range of single and three phase motors

2007 ◽  
Vol 8 (2) ◽  
pp. 221-224
Author(s):  
A. T. S. BABB
Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1578
Author(s):  
Luccas M. Kunzler ◽  
Luiz A. C. Lopes

Numerous applications, such as the synchronization of distributed energy resources to an existing AC grid, the operation of active power filters or the amplification of signals for Power-Hardware-In-The-Loop (PHIL) systems require a few tasks in common. Amplitude, phase angle and frequency detection are crucial for all these applications and many more. Various techniques are presented for three-phase and single-phase applications but only a few of them are able to identify the signals’ attributes for a wide range of frequencies and amplitudes. Single-phase systems are typically burdensome, considering the challenge to create an internal signal, orthogonal with the input, in order to perform the phase angle detection. This matter is even more critical when the amplitude and frequency of the input signal varies in a wide range. This paper presents an Orthogonal Signal Generator (OSG) based on integral and derivative actions. It includes a detailed design procedure and a design example. The performance of a single-phase wide range amplitude and frequency detector based on the discussed OSG is experimentally validated under steady state and dynamic conditions.


2015 ◽  
Vol 135 (3) ◽  
pp. 168-180 ◽  
Author(s):  
Ryota Mizutani ◽  
Hirotaka Koizumi ◽  
Kentaro Hirose ◽  
Kazunari Ishibashi

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 529
Author(s):  
Cristian Verdugo ◽  
Jose Ignacio Candela ◽  
Pedro Rodriguez

Series connections of modules in cascaded multilevel converters are prone to power imbalances due to voltage differences on their DC side. When modules are connected to direct current (DC) sources, such as photovoltaic panels, the capability of withstanding power imbalances is crucial for generating the maximum power. In order to provide a possible solution for this requirement, this paper proposes a control strategy called Quadrature Voltage Compensation, which allows a wide range of power imbalances. The proposed control strategy regulates the power by introducing a circulating current between the arms and a phase angle in the output voltage. The impact of the circulating current and its effect on the phase voltage are studied. To highlight the features of the proposed strategy, an analytical model based on vector superposition is also described, demonstrating the strong capability of tolerating power differences. Finally, to validate the effectiveness of the Quadrature Voltage Compensation, simulation and experimental results are presented for a three-phase isolated multi-modular converter.


Sign in / Sign up

Export Citation Format

Share Document