optimum selection
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 49)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
K Harshavardhana Reddy ◽  
Sachin Sharma ◽  
B. Madhuri ◽  
K Shivarama Krishna

2021 ◽  
Author(s):  
Yamini Jhanji

Sportswear constitutes an integral part of technical textiles and encases great potential as far as technological and design innovations are concerned. The sports textiles have witnessed tremendous evolution and that too at a much faster pace compared to ready to wear segment. The sports clothing is no longer restricted to sportsperson involved in performance sports or strenuous physical activities. However, there has been a surge for sports apparels and accessories among health conscious, fitness freak and gym enthusiasts. Accordingly, the sportswear industry has witnessed revolutionary advancements in development of different sportswear categories like active wear, leisurewear and athleisure to fulfill the requirements of sportsperson as well as health conscious millennials. The basic and functional requirements of comfort, breathability, light weight, anti-static and anti-odor properties can be engineered into sportswear by optimum selection of fibers, yarns, fabrics and garments’ designing aspects. The chapter will provide an insight on the classification, requirements, design aspects, raw material procurement, innovative and sustainable concepts employed in sportswear to enhance the functionality and comfort characteristics of sportswear. Furthermore, the role of technology and fashion in sportswear transformation is also covered in the last sections of the chapter.


2021 ◽  
Author(s):  
sobia Jangsher ◽  
Arafat Al-Dweik ◽  
MOHAMMAD AHMAD Al-Jarrah ◽  
Emad Alsusa ◽  
Mohamed-Slim Alouini

<div>This letter considers minimizing the bit error rate (BER) of unmanned aerial vehicle (UAV) communications assisted by intelligent reflecting surfaces (IRSs). By noting that increasing the number of IRS elements in the presence of phase errors does not necessarily improve the BER, it is crucial to use only the elements that contribute to reducing the BER. Consequently, we propose an efficient algorithm to activate only the elements that improve the BER. The proposed algorithm has lower complexity and comparable BER to the optimum selection process, which is an NP-hard problem. The accuracy of the estimated phase is evaluated by deriving the probability distribution function (PDF) of the least-square (LS) channel estimator, and showing that the PDF can be closely approximated by the von Mises distribution at high signal-to-noise ratios (SNRs). The obtained analytical and simulation results show that using all the available reflectors can significantly deteriorate the BER, and thus, elements’ selection is necessary. In particular scenarios, using about 26% of the reflectors provides more than 10 fold BER reduction.</div>


2021 ◽  
Author(s):  
sobia Jangsher ◽  
Arafat Al-Dweik ◽  
MOHAMMAD AHMAD Al-Jarrah ◽  
Emad Alsusa ◽  
Mohamed-Slim Alouini

<div>This letter considers minimizing the bit error rate (BER) of unmanned aerial vehicle (UAV) communications assisted by intelligent reflecting surfaces (IRSs). By noting that increasing the number of IRS elements in the presence of phase errors does not necessarily improve the BER, it is crucial to use only the elements that contribute to reducing the BER. Consequently, we propose an efficient algorithm to activate only the elements that improve the BER. The proposed algorithm has lower complexity and comparable BER to the optimum selection process, which is an NP-hard problem. The accuracy of the estimated phase is evaluated by deriving the probability distribution function (PDF) of the least-square (LS) channel estimator, and showing that the PDF can be closely approximated by the von Mises distribution at high signal-to-noise ratios (SNRs). The obtained analytical and simulation results show that using all the available reflectors can significantly deteriorate the BER, and thus, elements’ selection is necessary. In particular scenarios, using about 26% of the reflectors provides more than 10 fold BER reduction.</div>


ACS Omega ◽  
2021 ◽  
Author(s):  
Mobeen Murtaza ◽  
Sulaiman A. Alarifi ◽  
Ali Abozuhairah ◽  
Mohamed Mahmoud ◽  
Sagheer A. Onaizi ◽  
...  

2021 ◽  
pp. 2813-2823
Author(s):  
Firas A. Hadi ◽  
Zaid F. Makki ◽  
Rafa A. Al-Baldawi

The main objective of this paper is present a novel method to choice a certain wind turbine for a specific site by using normalized power and capacity factor curves. The site matching is based on identifying the optimum turbine rotation speed parameters from turbine performance index (TPI) curve, which is obtained from the higher values of normalized power and capacity factor curves. Wind Turbine Performance Index a new ranking parameter, is defined to optimally match turbines to wind site. The relations (plots) of normalized power, capacity factor, and turbine performance index versus normalized rated wind speed are drawn for a known value of Weibull shape parameter of a site, thus a superior method is used for Weibull parameters estimation which is called Equivalent Energy Method (EEM).


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2083
Author(s):  
Zhongrui Zhu ◽  
Delan Zhu ◽  
Maosheng Ge

Larger diameter and velocity and smaller landing angle of sprinkler irrigation droplets are more likely to cause soil splash and erosion. However, the mechanism of crop canopy influence on the physical parameters of sprinkler droplets is unknown. In this study, with the landing angle of sprinkler irrigation droplets as the independent variable and maize plants (Zea mays L.) as the research object, an indoor sprinkler irrigation experiment was carried out. The effects of maize canopy and variation in sprinkler irrigation droplets landing angle on the value and spatial distribution pattern of size, the velocity, and the landing angle of throughfall droplets was analyzed. In addition, the spatial variation patterns of throughfall droplets size, velocities’ distribution, and individual droplet’s speed, kinetic energy were also explored. The results showed that maize canopy and the decreasing of the sprinkler irrigation droplet landing angle had a positive and obvious effect on reducing the size and velocity of penetrating rain droplets. However, the throughfall droplets’ landing angles were only small variations. When the landing angle of sprinkler irrigation droplets was >45°, the spatial distribution of throughfall droplets size and velocity corresponded well with the canopy structure and leaf projection area of maize, i.e., the further away from the maize stalk, the larger the size and velocity of throughfall droplets. Nevertheless, if the landing angle of sprinkler irrigation droplets was <45°, the spatial distribution mentioned above was mainly affected by droplets landing angle. The spatial variation of throughfall droplets’ size and velocities at different measurement points was attributed to the change of the larger droplets’ volume proportion and the equivalent velocity. Although the maize leaves had a certain degree of perturbation effect on the velocities and kinetic energy of the larger kinetic energy droplets, the flight path of these drops did not alter significantly. The results of this research will be of practical value in guiding the development of a new sprayer and the optimum selection of sprinkler heads.


Sign in / Sign up

Export Citation Format

Share Document