scholarly journals Development of a SYBR Green I real-time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood

2007 ◽  
Vol 103 (5) ◽  
pp. 1897-1906 ◽  
Author(s):  
S. Zhou ◽  
Z. Hou ◽  
N. Li ◽  
Q. Qin
2007 ◽  
Vol 21 (5-6) ◽  
pp. 368-378 ◽  
Author(s):  
Anna Casabianca ◽  
Caterina Gori ◽  
Chiara Orlandi ◽  
Federica Forbici ◽  
Carlo Federico Perno ◽  
...  

2005 ◽  
Vol 71 (4) ◽  
pp. 2190-2194 ◽  
Author(s):  
Morgan Guilbaud ◽  
Pierre de Coppet ◽  
Fabrice Bourion ◽  
Cinta Rachman ◽  
Hervé Prévost ◽  
...  

ABSTRACT A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2.


2011 ◽  
Vol 25 (2-3) ◽  
pp. 137-141 ◽  
Author(s):  
Zhao Jing-jing ◽  
Chen Chang ◽  
Luo Peng ◽  
Ren Chun-hua ◽  
Jiang Xiao ◽  
...  

2009 ◽  
Vol 6 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Wu Cheng-Long ◽  
Shi Cheng-Yin ◽  
Huang Jie ◽  
Kong Xiao-Yu

AbstractA rapid and sensitive real-time polymerase chain reaction (PCR) assay coupled with SYBR Green I chemistry was developed for the quantitative detection of Turbot reddish body iridovirus (TRBIV) isolated from farmed turbot (Scophthalmus maximus). A 152 bp DNA fragment from the TRBIV major capsid protein (MCP) gene was involved in the real-time PCR (RT-PCR) assay using the Roter Gene 3000 sequence detection system. The PCR mixture contained a fluorescent dye, SYBR Green I, which exhibited fluorescence enhancement when bound to double-stranded (ds) DNA. The enhancement of fluorescence was proportional to the initial concentration of the template DNA. The positive control plasmid, pUCm-T/TRBIV MCP, containing the target sequence, was quantified to make a standard curve for sample detection after serial tenfold dilution. Linear coefficient correlations between the cycle threshold (CT) value and logarithmic positive plasmid concentration were close to one (R2=0.9952) and the detection limit of the assay was 102 copies of positive plasmids. The quantitative detection of virus in different tissues from TRBIV-infected fish showed that the spleen and kidney contained the largest number of viral particles (5.23×106 and 2.18×106 viral genome copies/mg tissue, respectively), while no viral DNA was detected in the muscular tissue. The molecular epidemic investigation of TRBIV showed that many cultured turbots were infected and TRBIV has become epidemic in turbot farms located along the Shandong peninsula. The virus number varied from 1.27×102 to 2.33×106 viral genome copies/mg tissue in spleens of infected turbot. These results suggest that the RT-PCR assay reported here can be used as a rapid, sensitive and quantitative method for TRBIV.


2006 ◽  
Vol 72 (11) ◽  
pp. 6972-6979 ◽  
Author(s):  
Christophe Monnet ◽  
Karine Correia ◽  
Anne-Sophie Sarthou ◽  
Françoise Irlinger

ABSTRACT The flora on the surface of smear-ripened cheeses is composed of numerous species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. Due to the absence of selective media, it is very difficult to quantify cheese surface bacteria, and, consequently, the ecology of the cheese surface microflora has not been extensively investigated. We developed a SYBR green I real-time PCR method to quantify Corynebacterium casei, a major species of smear-ripened cheeses, using primers designed to target the 16S rRNA gene. It was possible to recover C. casei genomic DNA from the cheese matrix with nearly the same yield that C. casei genomic DNA is recovered from cells recovered by centrifugation from liquid cultures. Quantification was linear over a range from 105 to 1010 CFU per g of cheese. The specificity of the assay was demonstrated with DNA from species related to C. casei and from other bacteria and yeasts belonging to the cheese flora. Nine commercial cheeses were analyzed by real-time PCR, and six of them were found to contain more than 105 CFU equivalents of C. casei per g. In two of them, the proportion of C. casei in the total bacterial flora was nearly 40%. The presence of C. casei in these samples was further confirmed by single-strand conformation polymorphism analysis and by a combined approach consisting of plate counting and 16S rRNA gene sequencing. We concluded that SYBR green I real-time PCR may be used as a reliable species-specific method for quantification of bacteria from the surface of cheeses.


Sign in / Sign up

Export Citation Format

Share Document