Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata

2006 ◽  
Vol 0 (0) ◽  
pp. 061222052703001-??? ◽  
Author(s):  
MAARIT KIVIMÄKI ◽  
KATRI KÄRKKÄINEN ◽  
MYRIAM GAUDEUL ◽  
GEIR LØE ◽  
JON ÅGREN
2007 ◽  
Vol 16 (2) ◽  
pp. 453-462 ◽  
Author(s):  
MAARIT KIVIMÄKI ◽  
KATRI KÄRKKÄINEN ◽  
MYRIAM GAUDEUL ◽  
GEIR LØE ◽  
JON ÅGREN

Genetics ◽  
2006 ◽  
Vol 174 (3) ◽  
pp. 1421-1430 ◽  
Author(s):  
Stephen I. Wright ◽  
John Paul Foxe ◽  
Leah DeRose-Wilson ◽  
Akira Kawabe ◽  
Mark Looseley ◽  
...  

Parasitology ◽  
2009 ◽  
Vol 136 (14) ◽  
pp. 1935-1942 ◽  
Author(s):  
F. TRIPET

SUMMARYThere has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions – the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context – is particularly important for our understanding of malaria transmission and how to control it. Indeed, describing the processes that create and maintain variation in mosquito immune responses and parasite virulence in natural populations may be as important to this endeavor as describing the immune responses themselves. For historical reasons, Ecological Immunology still largely relies on studies based on non-natural model systems. There are many reasons why current research should favour studies conducted closer to the field and more realistic experimental systems whenever possible. As a result, a number of researchers have raised concerns over the use of artificial host-parasite associations to generate inferences about population-level processes. Here I discuss and review several lines of evidence that, I believe, best illustrate and summarize the limitations of inferences generated using non-natural model systems.


2001 ◽  
Vol 79 (4) ◽  
pp. 297-302 ◽  
Author(s):  
R Boonstra ◽  
L Galea ◽  
S Matthews ◽  
J M Wojtowicz

The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.Key words: neurogenesis, hippocampus, dentate gyrus, learning, memory, wild population.


Heredity ◽  
2021 ◽  
Author(s):  
Christina Steinecke ◽  
Courtney E. Gorman ◽  
Marc Stift ◽  
Marcel E. Dorken

AbstractThe transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.


2020 ◽  
Author(s):  
Chinar Patil ◽  
Jonathan B. Sylvester ◽  
Kawther Abdilleh ◽  
Michael W. Norsworthy ◽  
Karen Pottin ◽  
...  

AbstractLake Malawi cichlid fishes exhibit extensive divergence in form and function among closely related species separated by a relatively small number of genetic changes. During the past million years, hundreds of species have diversified along an ecological axis in rock vs. sand habitats. We compared the genomes of rock- and sand-dwelling species and asked which genetic variants in which genes differed among the groups. We found that 96% of differentiated variants reside in non-coding sequence but these non-coding diverged variants are evolutionarily conserved. The majority of divergent coding variants are missense and/or loss of function. Regions near differentiated variants are enriched for craniofacial, neural and behavioral functional categories. To follow up experimentally, we used rock- vs. sand-species and their hybrids to (i) clarify the push-pull roles of BMP signaling and irx1b in the specification of forebrain territories during gastrulation and (ii) reveal striking context-dependent brain gene expression during adult social behavior. Our results suggest compelling ties between early brain development and adult behavior and highlight the promise of evolutionary reverse genetics – the identification of functional variants from genome sequencing in natural populations.


Sign in / Sign up

Export Citation Format

Share Document