scholarly journals Testing for Effects of Recombination Rate on Nucleotide Diversity in Natural Populations of Arabidopsis lyrata

Genetics ◽  
2006 ◽  
Vol 174 (3) ◽  
pp. 1421-1430 ◽  
Author(s):  
Stephen I. Wright ◽  
John Paul Foxe ◽  
Leah DeRose-Wilson ◽  
Akira Kawabe ◽  
Mark Looseley ◽  
...  
Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1303-1316
Author(s):  
Michael W Nachman

Introns of four X-linked genes (Hprt, Plp, Glra2, and Amg) were sequenced to provide an estimate of nucleotide diversity at nuclear genes within the house mouse and to test the neutral prediction that the ratio of intraspecific polymorphism to interspecific divergence is the same for different loci. Hprt and Plp lie in a region of the X chromosome that experiences relatively low recombination rates, while Glra2 and Amg lie near the telomere of the X chromosome, a region that experiences higher recombination rates. A total of 6022 bases were sequenced in each of 10 Mus domesticus and one M. caroli. Average nucleotide diversity (π) for introns within M. domesticus was quite low (π = 0.078%). However, there was substantial variation in the level of heterozygosity among loci. The two telomeric loci, Glra2 and Amg, had higher ratios of polymorphism to divergence than the two loci experiencing lower recombination rates. These results are consistent with the hypothesis that heterozygosity is reduced in regions with lower rates of recombination, although sampling of additional genes is needed to establish whether there is a general correlation between heterozygosity and recombination rate as in Drosophila melanogaster.


2018 ◽  
Author(s):  
Ahmed R. Hasan ◽  
Rob W. Ness

AbstractRecombination confers a major evolutionary advantage by breaking up linkage disequilibrium (LD) between harmful and beneficial mutations and facilitating selection. Here, we use genome-wide patterns of LD to infer fine-scale recombination rate variation in the genome of the model green alga Chlamydomonas reinhardtii and estimate rates of LD decay across the entire genome. We observe recombination rate variation of up to two orders of magnitude, finding evidence of recombination hotspots playing a role in the genome. Recombination rate is highest just upstream of genic regions, suggesting the preferential targeting of recombination breakpoints in promoter regions. Furthermore, we observe a positive correlation between GC content and recombination rate, suggesting a role for GC-biased gene conversion or selection on base composition within the GC-rich genome of C. reinhardtii. We also find a positive relationship between nucleotide diversity and recombination, consistent with widespread influence of linked selection in the genome. Finally, we use estimates of the effective rate of recombination to calculate the rate of sex that occurs in natural populations of this important model microbe, estimating a sexual cycle roughly every 770 generations. We argue that the relatively infrequent rate of sex and large effective population size creates an population genetic environment that increases the influence of linked selection on the genome.


2019 ◽  
Vol 36 (10) ◽  
pp. 2358-2374
Author(s):  
Nicolas Alcala ◽  
Amy Goldberg ◽  
Uma Ramakrishnan ◽  
Noah A Rosenberg

Abstract Natural populations display a variety of spatial arrangements, each potentially with a distinctive impact on genetic diversity and genetic differentiation among subpopulations. Although the spatial arrangement of populations can lead to intricate migration networks, theoretical developments have focused mainly on a small subset of such networks, emphasizing the island-migration and stepping-stone models. In this study, we investigate all small network motifs: the set of all possible migration networks among populations subdivided into at most four subpopulations. For each motif, we use coalescent theory to derive expectations for three quantities that describe genetic variation: nucleotide diversity, FST, and half-time to equilibrium diversity. We describe the impact of network properties on these quantities, finding that motifs with a high mean node degree have the largest nucleotide diversity and the longest time to equilibrium, whereas motifs with low density have the largest FST. In addition, we show that the motifs whose pattern of variation is most strongly influenced by loss of a connection or a subpopulation are those that can be split easily into disconnected components. We illustrate our results using two example data sets—sky island birds of genus Sholicola and Indian tigers—identifying disturbance scenarios that produce the greatest reduction in genetic diversity; for tigers, we also compare the benefits of two assisted gene flow scenarios. Our results have consequences for understanding the effect of geography on genetic diversity, and they can assist in designing strategies to alter population migration networks toward maximizing genetic variation in the context of conservation of endangered species.


2019 ◽  
Vol 36 (9) ◽  
pp. 2029-2039 ◽  
Author(s):  
Steven Dreissig ◽  
Martin Mascher ◽  
Stefan Heckmann

Abstract Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.


2006 ◽  
Vol 0 (0) ◽  
pp. 061222052703001-??? ◽  
Author(s):  
MAARIT KIVIMÄKI ◽  
KATRI KÄRKKÄINEN ◽  
MYRIAM GAUDEUL ◽  
GEIR LØE ◽  
JON ÅGREN

2008 ◽  
Vol 17 (6) ◽  
pp. 685-697 ◽  
Author(s):  
C. M. Sgrò ◽  
C. C. Milton ◽  
L. T. Jensen ◽  
J. Frydenberg ◽  
V. Loeschcke ◽  
...  

Heredity ◽  
2021 ◽  
Author(s):  
Christina Steinecke ◽  
Courtney E. Gorman ◽  
Marc Stift ◽  
Marcel E. Dorken

AbstractThe transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.


2017 ◽  
Author(s):  
Jacob A Tennessen

The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. Such clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document