scholarly journals Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata

Heredity ◽  
2021 ◽  
Author(s):  
Christina Steinecke ◽  
Courtney E. Gorman ◽  
Marc Stift ◽  
Marcel E. Dorken

AbstractThe transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.

1990 ◽  
Vol 68 (3) ◽  
pp. 663-668 ◽  
Author(s):  
Daniel J. Perry ◽  
Peggy Knowles

Arrays of open-pollinated seeds were assayed for allozyme polymorphisms at four loci (Mdh-1, Me, 6Pg-2, and Pgm) to obtain estimates of outcrossing rates for three eastern white cedar populations in northwestern Ontario, Canada. Multilocus population outcrossing rate estimates were low, ranging from 0.507 to 0.745, with significant heterogeneity among populations. Low stand densities and relatively high selfed embryo survival may have contributed to the low effective outcrossing rates observed. Single-tree multilocus outcrossing rate estimates were obtained for nine trees from one population. When estimated jointly with outcross pollen pool allele frequencies, these outcrossing rate estimates ranged from 0.253 to 1.023 with significant heterogeneity among trees. Key words: mating system, outcrossing rate, Thuja occidentalis L.


1994 ◽  
Vol 72 (9) ◽  
pp. 1289-1293 ◽  
Author(s):  
M. Morgante ◽  
P. Rossi ◽  
G. G. Vendramin ◽  
G. Boscherini

Outcrossing rates were estimated in two artificial stands of Pinus leucodermis, a wind pollinated conifer characterized by a relatively high level of selfing. Multilocus outcrossing rates, estimated by assaying five enzyme loci, were lower than 86% in the two stands, using both dormant and germinating seeds, and not different from those observed in two natural populations located in the same area. The lack of relevant differences between single-locus minimum variance means and the multilocus outcrossing rate estimates observed in both the artificial stands indicates that most of the apparent selfing is probably caused by actual self-fertilization. The presence of a high level of self-fertilization in this species seems confirmed also in artificial stands, where the density is higher and neighbourhood structure should be less pronounced. The high level of self-fertilization found in P. leucodermis, which is probably due to the presence of a reduced number of recessive embryonic lethals as a consequence of genetic drift, could represent a selective advantage for this pioneering and precocius species. Key words: mating system, outcrossing rates, artificial stands, Pinus leucodermis.


Helia ◽  
2020 ◽  
Vol 43 (72) ◽  
pp. 15-32
Author(s):  
Agustina Gutierrez ◽  
Daiana Scaccia Baffigi ◽  
Monica Poverene

AbstractHelianthus annuus subsp. annuus and H. petiolaris are wild North American species that have been naturalized in central Argentina. They have a sporophytic self-incompatibility genetic system that prevent self-fertilization but the occurrence of self-compatible plants in Argentina was observed in both species and could in part explain their highly invasive ability. Their geographical distribution coincides with the major crop area. The domestic sunflower is self-compatible, can hybridize with both species and presents a considerable amount of gene flow. The aim of this study is to understand the self-incompatibility mechanism in both wild Helianthus species. Reciprocal crossing and seed production were used to identify self-compatible genotypes, the number and distribution of self-incompatibility alleles within populations and the type and extent of allelic interactions in the pollen and pistil. The behaviour of S alleles within each population was explained by five functional S alleles and one non-functional allele in each species, differing in their presence and frequency within accessions. In both species, the allelic interactions were of dominance/recessiveness and codominance in pollen, whereas it was only codominance in the pistil. Inbreeding effects in wild materials appeared in the third generation of self-pollination, with lethal effects in most plants. The number of S alleles is low and they behave in a similar way of other Asteraceae species. The self-compatibility was addressed to non-functional S alleles introgressed in wild Helianthus plants through gene flow from self-compatible sunflower.


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


2005 ◽  
Vol 40 (10) ◽  
pp. 975-980 ◽  
Author(s):  
Maria Imaculada Zucchi ◽  
José Baldin Pinheiro ◽  
Lázaro José Chaves ◽  
Alexandre Siqueira Guedes Coelho ◽  
Mansuêmia Alves Couto ◽  
...  

This study was carried out to assess the genetic variability of ten "cagaita" tree (Eugenia dysenterica) populations in Southeastern Goiás. Fifty-four randomly amplified polymorphic DNA (RAPD) loci were used to characterize the population genetic variability, using the analysis of molecular variance (AMOVA). A phiST value of 0.2703 was obtained, showing that 27.03% and 72.97% of the genetic variability is present among and within populations, respectively. The Pearson correlation coefficient (r) among the genetic distances matrix (1 - Jaccard similarity index) and the geographic distances were estimated, and a strong positive correlation was detected. Results suggest that these populations are differentiating through a stochastic process, with restricted and geographic distribution dependent gene flow.


Genetics ◽  
2006 ◽  
Vol 174 (3) ◽  
pp. 1421-1430 ◽  
Author(s):  
Stephen I. Wright ◽  
John Paul Foxe ◽  
Leah DeRose-Wilson ◽  
Akira Kawabe ◽  
Mark Looseley ◽  
...  

2021 ◽  
Vol 118 (10) ◽  
pp. e2016900118
Author(s):  
Ian R. MacLachlan ◽  
Tegan K. McDonald ◽  
Brandon M. Lind ◽  
Loren H. Rieseberg ◽  
Sam Yeaman ◽  
...  

Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.


Sign in / Sign up

Export Citation Format

Share Document