Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of sigma70-type factors that respond to extracytoplasmic stimuli

1995 ◽  
Vol 18 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Annemarie Angerer ◽  
Sabine Enz ◽  
Martina Ochs ◽  
Volkmar Braun
2003 ◽  
Vol 185 (13) ◽  
pp. 3745-3752 ◽  
Author(s):  
Sabine Enz ◽  
Heidi Brand ◽  
Claudia Orellana ◽  
Susanne Mahren ◽  
Volkmar Braun

ABSTRACT Transcription of the fecABCDE ferric citrate transport genes of Escherichia coli K-12 is initiated by a signaling cascade from the cell surface into the cytoplasm. FecR receives the signal in the periplasm from the outer membrane protein FecA loaded with ferric citrate, transmits the signal across the cytoplasmic membrane, and converts FecI in the cytoplasm to an active sigma factor. In this study, it was shown through the use of a bacterial two-hybrid system that, in the periplasm, the C-terminal FecR237-317 fragment interacts with the N-terminal FecA1-79 fragment. In the same C-terminal region, amino acid residues important for the interaction of FecR with FecA were identified by random and site-directed mutagenesis. They were preferentially located in and around a leucine motif (residues 247 to 268) which was found to be highly conserved in FecR-like proteins. The degree of residual binding of FecR mutant proteins to FecA was correlated with the degree of transcription initiation in response to ferric citrate in the culture medium. Three randomly generated inactive FecR mutants, FecR(L254E), FecR(L269G), and FecR(F284L), were suppressed to different degrees by the mutants FecA(G39R) and FecR(D43E). One FecR mutant, FecR (D138E, V197A), induced fecA promoter-directed transcription constitutively in the absence of ferric citrate and bound more strongly than wild-type FecR to FecA. The data showed that FecR interacts in the periplasm with FecA to confer ferric citrate-induced transcription of the fec transport genes and identified sites in FecR and FecA that are important for signal transduction.


2003 ◽  
Vol 185 (21) ◽  
pp. 6494-6494
Author(s):  
Sabine Enz ◽  
Heidi Brand ◽  
Claudia Orellana ◽  
Susanne Mahren ◽  
Uwe H. Stroeher ◽  
...  

1988 ◽  
Vol 170 (9) ◽  
pp. 4286-4292 ◽  
Author(s):  
H E Schellhorn ◽  
H M Hassan

1995 ◽  
Vol 177 (22) ◽  
pp. 6456-6461 ◽  
Author(s):  
M Nørregaard-Madsen ◽  
E McFall ◽  
P Valentin-Hansen

2004 ◽  
Vol 186 (16) ◽  
pp. 5303-5310 ◽  
Author(s):  
Annette Sauter ◽  
Volkmar Braun

ABSTRACT The FecA outer membrane protein of Escherichia coli functions as a transporter of ferric citrate and as a signal receiver and signal transmitter for transcription initiation of the fec transport genes. Three FecA regions for which functional roles have been predicted from the crystal structures were mutagenized: (i) loops 7 and 8, which move upon binding of ferric citrate and close the entrance to the ferric citrate binding site; (ii) the dinuclear ferric citrate binding site; and (iii) the interface between the globular domain and the β-barrel. Deletion of loops 7 and 8 abolished FecA transport and induction activities. Deletion of loops 3 and 11 also inactivated FecA, whereas deletion of loops 9 and 10 largely retained FecA activities. The replacement of arginine residue R365 or R380 and glutamine Q570, which are predicted to serve as binding sites for the negatively charged dinuclear ferric citrate, with alanine resulted in inactive FecA, whereas the binding site mutant R438A retained approximately 50% of the FecA induction and transport activities. Residues R150, E541, and E587, conserved among energy-coupled outer membrane transporters, are predicted to form salt bridges between the globular domain and the β-barrel and to contribute to the fixation of the globular domain inside the β-barrel. Mutations E541A and E541R affected FecA induction and transport activity slightly, whereas mutations E587A and E587R more strongly reduced FecA activity. The double mutations R150A E541R and R150A E587R nearly abolished FecA activity. Apparently, the salt bridges are less important than the individual functions these residues seem to have for FecA activity. Comparison of the properties of the FecA, FhuA, FepA, and BtuB transporters indicates that although they have very similar crystal structures, the details of their functional mechanisms differ.


2010 ◽  
Author(s):  
Alberto Santos-Zavaleta ◽  
Socorro Gama-Castro ◽  
Alberto Santos-Zavaleta ◽  
Martin Peralta-Gil ◽  
Verena Weiss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document