scholarly journals The standard model of star formation applied to massive stars: accretion discs and envelopes in molecular lines

2010 ◽  
Vol 406 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Eric Keto ◽  
Qizhou Zhang
2004 ◽  
Vol 221 ◽  
pp. 201-212
Author(s):  
Lee Hartmann

Protostellar core formation is probably much more dynamic, and magnetic fields are probably much less important, than has been previously assumed in the standard model of low-mass star formation. This revised picture has important consequences: it is easier to understand the observed rapidity of star formation in molecular clouds; cores are more likely to have structures favoring high infall rates at early times, helping to explain the differences between Class 0 and Class I protostars; and core structure and asymmetry will strongly favor post-collapse fragmentation into binary and multiple stellar systems.


2006 ◽  
Vol 2 (S237) ◽  
pp. 404-404
Author(s):  
M. R. Cunningham ◽  
I. Bains ◽  
N. Lo ◽  
T. Wong ◽  
M. G. Burton ◽  
...  

Any successful model of star formation must be able to explain the low star forming efficiency of molecular clouds in our Galaxy. If the collapse of gas is regulated only by gravity, then the star formation rate should be orders of magnitude larger than the 1 M per year within our galaxy. The standard model invokes magnetic fields to slow down the rate of collapse, but does not explain star formation in cluster mode, or the lack of observed variations in the chemistry of molecular clouds if they are long-lived entities.


2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Shou Katakura ◽  
Fumitaka Nakamura ◽  
Yoshito Shimajiri

AbstractWe report on a possible cloud–cloud collision in the DR 21 region, which we found through molecular observations with the Nobeyama 45 m telescope. We mapped an area of ∼8′ × 12′ around the region with 20 molecular lines including the 12CO(J = 1–0) and 13CO(J = 1–0) emission lines, and 16 of them were significantly detected. Based on the 12CO and 13CO data, we found five distinct velocity components in the observed region, and we call the molecular gas associated with these components “−42,”“−22,” “−3,” “9,” and “17” km s−1 clouds, after their typical radial velocities. The −3 km s−1 cloud is the main filamentary cloud ($\sim 31000\, M_{\odot }$) associated with young massive stars such as DR21 and DR21(OH), and the 9 km s−1 cloud is a smaller cloud ($\sim 3400\, M_{\odot }$) which may be an extension of the W75 region in the north. The other clouds are much smaller. We found a clear anticorrelation in the distributions of the −3 and 9 km s−1 clouds, and detected faint 12CO emission which had intermediate velocities bridging the two clouds at their intersection. These facts strongly indicate that the two clouds are colliding against each other. In addition, we found that DR21 and DR21(OH) are located in the periphery of the densest part of the 9 km s−1 cloud, which is consistent with results of recent numerical simulations of cloud–cloud collisions. We therefore suggest that the −3 and 9 km s−1 clouds are colliding, and that the collision induced the massive star formation in the DR21 cloud. The interaction of the −3 and 9 km s−1 clouds was previously suggested by Dickel, Dickel, and Wilson (1978, ApJ, 223, 840), and our results strongly support their hypothesis of the interaction.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Sign in / Sign up

Export Citation Format

Share Document