scholarly journals Environmental dependence of star formation rate, specific star formation rate and stellar mass for blue and red galaxies

2011 ◽  
Vol 417 (1) ◽  
pp. 453-457 ◽  
Author(s):  
Xin-Fa Deng ◽  
Yi-Qing Chen ◽  
Peng Jiang
2021 ◽  
Vol 57 (1) ◽  
pp. 157-166
Author(s):  
Xin-Fa Deng ◽  
Xiao-Qing Wen

Using the apparent-magnitude limited active galactic nucleus (AGN) host galaxy sample of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we investigate the environmental dependence of age, stellar mass, the star formation rate (SFR) and stellar velocity dispersion of AGN host galaxies. We divide the whole apparent-magnitude limited AGN sample into many subsamples with a redshift binning size of Δz = 0.01, and analyse the environmental dependence of these galaxy properties of subsamples in each redshift bin. It turns out that these parameters of AGN host galaxies seemingly only have a weak environmental dependence.


2020 ◽  
Vol 495 (2) ◽  
pp. 1958-1977 ◽  
Author(s):  
Bitao Wang ◽  
Michele Cappellari ◽  
Yingjie Peng ◽  
Mark Graham

ABSTRACT We study the link between the kinematic-morphology of galaxies, as inferred from integral-field stellar kinematics, and their relation between mass and star formation rate. Our sample consists of ∼3200 galaxies with integral-field spectroscopic data from the MaNGA survey (Mapping Nearby Galaxies at Apache Point Observatory) with available determinations of their effective stellar angular momentum within the half-light radius $\lambda _{R_e}$. We find that for star-forming galaxies, namely along the star formation main sequence (SFMS), the $\lambda _{R_e}$ values remain large and almost unchanged over about two orders of magnitude in stellar mass, with the exception of the lowest masses $\mathcal {M}_{\star }\lesssim 2\times 10^{9} \, \mathcal {M}_{\odot }$, where $\lambda _{R_e}$ slightly decreases. The SFMS is dominated by spiral galaxies with small bulges. Below the SFMS, but above the characteristic stellar mass $\mathcal {M}_{\rm crit}\approx 2\times 10^{11} \, \mathcal {M}_{\odot }$, there is a sharp decrease in $\lambda _{R_e}$ with decreasing star formation rate (SFR): massive galaxies well below the SFMS are mainly slow-rotator early-type galaxies, namely genuinely spheroidal galaxies without discs. Below the SFMS and below $\mathcal {M}_{\rm crit}$ the decrease of $\lambda _{R_e}$ with decreasing SFR becomes modest or nearly absent: low-mass galaxies well below the SFMS, are fast-rotator early-type galaxies, and contain fast-rotating stellar discs like their star-forming counterparts. We also find a small but clear environmental dependence for the massive galaxies: in the mass range $10^{10.9}\!-\!10^{11.5} \, \mathcal {M}_{\odot }$, galaxies in rich groups or denser regions or classified as central galaxies have lower values of $\lambda _{R_e}$. While no environmental dependence is found for galaxies of lower mass. We discuss how the above results can be understood as due to the different star formation and mass assembly histories of galaxies with varying mass.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


2020 ◽  
Vol 492 (2) ◽  
pp. 2835-2846 ◽  
Author(s):  
Sultan Hassan ◽  
Kristian Finlator ◽  
Romeel Davé ◽  
Christopher W Churchill ◽  
J Xavier Prochaska

ABSTRACT We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an important role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.


2015 ◽  
Vol 799 (2) ◽  
pp. 183 ◽  
Author(s):  
Brett Salmon ◽  
Casey Papovich ◽  
Steven L. Finkelstein ◽  
Vithal Tilvi ◽  
Kristian Finlator ◽  
...  

2020 ◽  
Vol 499 (1) ◽  
pp. 948-956
Author(s):  
S M Randriamampandry ◽  
M Vaccari ◽  
K M Hess

ABSTRACT We investigate the relationship between the environment and the galaxy main sequence (the relationship between stellar mass and star formation rate), as well as the relationship between the environment and radio luminosity ($P_{\rm 1.4\, GHz}$), to shed new light on the effects of the environment on galaxies. We use the VLA-COSMOS 3-GHz catalogue, which consists of star-forming galaxies and quiescent galaxies (active galactic nuclei) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of star-forming galaxies with respect to the main-sequence consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 ≤ z ≤ 1.2. Our results corroborate that the star formation rate is declining with cosmic time, which is consistent with the literature. We find that the slope of the main sequence for different z and M* bins is shallower than the main-sequence consensus, with a gradual evolution towards higher redshift bins, irrespective of environment. We see no trends for star formation rate in either environment or galaxy type, given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of the main sequence at high stellar masses for our sample.


Sign in / Sign up

Export Citation Format

Share Document