scholarly journals A new determination of the local dark matter density from the kinematics of K dwarfs

2012 ◽  
Vol 425 (2) ◽  
pp. 1445-1458 ◽  
Author(s):  
Silvia Garbari ◽  
Chao Liu ◽  
Justin I. Read ◽  
George Lake
2010 ◽  
Vol 82 (2) ◽  
Author(s):  
Miguel Pato ◽  
Oscar Agertz ◽  
Gianfranco Bertone ◽  
Ben Moore ◽  
Romain Teyssier

2017 ◽  
Vol 12 (S330) ◽  
pp. 255-258
Author(s):  
Hamish Silverwood ◽  
Sofia Sivertsson ◽  
Justin Read ◽  
Gianfranco Bertone ◽  
Pascal Steger

AbstractWe present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwoodet al.(2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data usingMultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbenderet al.(2015), yielding a result of ρDM= 0.46+0.07−0.09GeV cm−3= 0.012+0.001−0.002M⊙pc−3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.


2016 ◽  
Vol 458 (4) ◽  
pp. 3839-3850 ◽  
Author(s):  
Qiran Xia ◽  
Chao Liu ◽  
Shude Mao ◽  
Yingyi Song ◽  
Lan Zhang ◽  
...  

2010 ◽  
Vol 514 ◽  
pp. A47 ◽  
Author(s):  
S. Pasetto ◽  
E. K. Grebel ◽  
P. Berczik ◽  
R. Spurzem ◽  
W. Dehnen

2014 ◽  
Vol 10 (S306) ◽  
pp. 258-261
Author(s):  
Metin Ata ◽  
Francisco-Shu Kitaura ◽  
Volker Müller

AbstractWe study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based onN-body simulations.


2016 ◽  
Vol 456 (4) ◽  
pp. 3542-3552 ◽  
Author(s):  
Edouard Tollet ◽  
Andrea V. Macciò ◽  
Aaron A. Dutton ◽  
Greg S. Stinson ◽  
Liang Wang ◽  
...  

2020 ◽  
Vol 495 (4) ◽  
pp. 4828-4844 ◽  
Author(s):  
Rui Guo ◽  
Chao Liu ◽  
Shude Mao ◽  
Xiang-Xiang Xue ◽  
R J Long ◽  
...  

ABSTRACT We apply the vertical Jeans equation to the kinematics of Milky Way stars in the solar neighbourhood to measure the local dark matter density. More than 90 000 G- and K-type dwarf stars are selected from the cross-matched sample of LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) fifth data release and Gaia second data release for our analyses. The mass models applied consist of a single exponential stellar disc, a razor thin gas disc, and a constant dark matter density. We first consider the simplified vertical Jeans equation that ignores the tilt term and assumes a flat rotation curve. Under a Gaussian prior on the total stellar surface density, the local dark matter density inferred from Markov chain Monte Carlo simulations is $0.0133_{-0.0022}^{+0.0024}\ {\rm M}_{\odot }\, {\rm pc}^{-3}$. The local dark matter densities for subsamples in an azimuthal angle range of −10° < ϕ < 5° are consistent within their 1σ errors. However, the northern and southern subsamples show a large discrepancy due to plateaux in the northern and southern vertical velocity dispersion profiles. These plateaux may be the cause of the different estimates of the dark matter density between the north and south. Taking the tilt term into account has little effect on the parameter estimations and does not explain the north and south asymmetry. Taking half of the difference of σz profiles as unknown systematic errors, we then obtain consistent measurements for the northern and southern subsamples. We discuss the influence of the vertical data range, the scale height of the tracer population, the vertical distribution of stars, and the sample size on the uncertainty of the determination of the local dark matter density.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Thomas Lacroix ◽  
Céline Bœhm ◽  
Joseph Silk

Sign in / Sign up

Export Citation Format

Share Document