scholarly journals What Formyl Peptide Receptors, if Any, Are Triggered by Compound 43 and Lipoxin A4?

2011 ◽  
Vol 74 (3) ◽  
pp. 227-234 ◽  
Author(s):  
H. Forsman ◽  
K. Önnheim ◽  
E. Andreasson ◽  
C. Dahlgren
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Busch ◽  
Stefan Vieten ◽  
Susan Brödel ◽  
Kristina Endres ◽  
Bernd Bufe

Abstract Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs – via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 – to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.


2003 ◽  
Vol 2 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Yingying Le ◽  
Ronghua Sun ◽  
Guoguang Ying ◽  
Pablo Iribarren ◽  
Ji Wang

2019 ◽  
Vol 30 (3) ◽  
pp. 346-356 ◽  
Author(s):  
Xi Wen ◽  
Xuehua Xu ◽  
Wenxiang Sun ◽  
Keqiang Chen ◽  
Miao Pan ◽  
...  

A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.


2018 ◽  
Vol 39 (10) ◽  
pp. 815-829 ◽  
Author(s):  
Elisabeth Weiß ◽  
Dorothee Kretschmer

Sign in / Sign up

Export Citation Format

Share Document