Storage times of whole blood and of buffy coat determine leucocyte degradation in platelet concentrates

Vox Sanguinis ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 170-170
Author(s):  
R. Karger ◽  
V. Kretschmer
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 956-956
Author(s):  
Miguel Lozano ◽  
Ana Galan ◽  
Roberto Mazzara ◽  
Laurence Corash ◽  
Gines Escolar

Abstract Background: The risk of bacterial growth has limited the shelf life of platelet concentrates (PC) to 5 days. Modern platelet storage containers facilitate storage for up to 7 days, if bacterial contamination is prevented. INTERCEPT (Baxter, La Chatre, France; Cerus, Concord, CA) photochemical treatment (PCT) for pathogen reduction based on amotosalen (150μM) and UVA illumination (3 J/cm2) inactivates high titers of bacteria in PC (Transfusion2004; 44: 1496–1504). Adhesion and aggregation of platelets to injured vascular surfaces are critical aspects of platelet hemostatic function. In this study, the adhesion and aggregation of leucocyte-reduced buffy coat derived PC (BCPC), treated with INTERCEPT and stored up to 7 days, were measured on injured vascular surfaces using an ex-vivo blood flow system. Methods: BCPC were prepared from 450 mL-whole blood donations with the top and bottom method (Optipress II, Baxter). Five BCPC, of the same ABO group, were pooled with additive solution (Intersol™) the day following collection, after viral screening testing was completed. Following centrifugation and leukocyte depletion, two BCPC pools of the same ABO group were mixed and divided. One pooled BCPC was treated with INTERCEPT (I-BCPC) and the other was prepared by conventional methods (C-BCPC); and both were stored in 1.3 liter PL2410 plastic containers (Baxter R4R7012) at 22 ± 2°C with continuous agitation for 7 days. Samples for hemostatic function testing were taken immediately after preparation before splitting for treatment and after 5 and 7 days of storage. Platelet counts were performed in K3EDTA in a Coulter MD II counter (Coulter, Miami, FL). Samples of I-BCPC and C-BCPC were added to citrate anticoagulated blood, previously depleted of platelets and leukocytes by filtration, and adjusted to a final platelet count of 150x109/L. Enzymatically denuded vascular segments were exposed to circulating whole blood, reconstituted with I-BCPC and C-BCPC, in Baumgartner chambers at a shear rate of 800 s−1 for 10 minutes. The proportion (%) of the vascular surface area covered by platelets after perfusion was measured for each type of BCPC (N = 9) at each storage time point. Platelets and groups of platelets were classified as adhesive when platelet masses were less than 5 μm in height and as thrombi when height exceeded 5 μm. Data were analyzed with the SPSS 12.0.1 statistical package with significance at p < 0.05, and expressed at the mean ± SEM Results(Table). Conclusion: The platelet count of I- BCPC decreased by 12.3% including PCT processing losses and 7 days of storage. However, I- BCPC platelet adhesive and aggregatory capacities under flow conditions were similar to C- BCPC, and were well conserved for up to 7 days of storage. Hemostatic Function of Stored I-BCPC and C-BCPC Parameter I-BCPC C-BCPC p Day 1(Pre Treatment) Platelet Count (109/L) 945±40 945±40 Platelet Coverage (%) 26.0±3.7 26.0±4.2 Adhesion(%) 24.0±3.7 24.0±3.7 Thrombus(%) 1.9±0.6 1.9±0.6 Day 5 Storage Platelet Count (109/L 844±41 902±44 0.004 Platelet Coverage (%) 20.9±2.2 20.6±1.6 0.9 Adhesion(%) 19.9±2.1 19.3±1.4 0.8 Thrombus(%) 0.9±0.3 1.2±0.4 0.5 Day 7 Storage Platelet Count (109/L) 829±32 923±48 0.008 Platelet Coverage (%) 27.1±2.9 21.2±2.8 0.06 Adhesion(%) 26.0±2.7 20.4±2.7 0.06 Thrombus(%) 1.2±0.3 0.7±0.2 0.16


Vox Sanguinis ◽  
1995 ◽  
Vol 68 (3) ◽  
pp. 152-159
Author(s):  
H. Gulliksson ◽  
L. Eriksson ◽  
C.F. Högman ◽  
J.M. Payrat

Vox Sanguinis ◽  
2005 ◽  
Vol 88 (3) ◽  
pp. 164-171 ◽  
Author(s):  
C. P. Turner ◽  
J. Sutherland ◽  
M. Wadhwa ◽  
P. Dilger ◽  
R. Cardigan

Vox Sanguinis ◽  
1991 ◽  
Vol 60 (1) ◽  
pp. 16-22 ◽  
Author(s):  
R. Fijnheer ◽  
H.A. Veldman ◽  
A.J.M. Eertwegh ◽  
C.W.N. Gouwerok ◽  
C.H.E. Homburg ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Monica Alejandra Camargo Castillo ◽  
Bruno Albuquerque De Almeida ◽  
Felipe Yuji Okano ◽  
Angelica Menin ◽  
Stella De Feira Valle

Background: Canine distemper has been classified as highly contagious for most of domestic and wild carnivores, and the infection can be fatal. Canine distemper inclusion bodies, also denominated Lenz inclusion bodies, are large aggregates of viral nucleocapsid particles that can be form in red blood cells (RBCs), white blood cells (WBCs) and epithelial cells in many tissues during the acute phase of infection. Their presence in blood is transient and rarely encountered in light microscopy but are pathognomonic when identified in blood smears. The objective of this study was to investigate the frequency of distemper inclusions in erythrocytes according to the fraction of the sample used for blood smears. Materials, Methods & Results: The study was conducted with routine blood sample provided by the Veterinary Laboratory of Clinical Analysis from the Veterinary Teaching Hospital of Universidade Federal do Rio Grande do Sul. The EDTA-K2 blood sample of a 40 days old male dog, mixed breed, no immunization records, presenting diarrhea, hyporexia, myoclonus and pustules in the abdomen, was selected. In a routine peripheral blood smear examination, several distemper inclusions were observed in the erythrocytes. From this sample, ten smears were performed using a whole blood (WB) and top erythrocyte fraction combined with buffy coat, denominated of expanded buffy coat (EBC). The EBC fraction was obtained after centrifugation of EDTA whole blood in microhematocrit tubes at 9600 x g for 5 min to obtained the packed cell volume (PCV) and buffy coat. After centrifugation, the blood cells are separated into three layers based on density: platelets (adjacent to supernatant), WBCs, and RBCs in the bottom. The PCV was measured and the microhematocrit tube was ruptured 2% below the interface between leukocytes and plasma, deposited into a plastic microtubes, homogenized and used for blood smear preparation. All smears were stained with Diff-Quick Stain. The frequency of observation of RBCs with distemper inclusions bodies was performed under optical microscopy, in the immersion objective (100x), accounting for complete fields up to a minimum of 1000 RBCs, and compared between WB and EBC. In comparison between blood smears obtained from WB and EBC, a highly significant difference (P = 0.0004) was observed in the frequency distribution of distemper inclusion. The median of frequency of RBCs with distemper inclusions in a WB smears was 12.68/1000 RBCs (10.1 - 16.1/1000 RBCs), with a coefficient of variation (CV) of 12%. Median of frequency of distemper inclusions from EBC smears was 54.23/1000 RBCs (45-77.9/1000 RBCs), CV of 18% were observed. The median frequency of inclusions found in EBC smears was 4.27 times higher than the WB smears. Discussion: Buffy coat smear providing a concentrated preparation of nucleated cells and this procedure is useful to looking for low-incidence infectious organisms or other hematologic alterations. The upper fraction of the RBC column, below the buffy coat, is composed of young RBCs. Selection of these portion, and their possible formed in the bone marrow viral replication phase, could justified the increase in the frequency of RBCs containing viral inclusions in EBC, which would also increase the sensitivity of the technique. EBC was homogenized previously to make the smears, certifying the adequate cell distribution in the slide surface without interfere with the frequency of distemper inclusion in RBCs observation. These results were confirmed with the coefficients of variation. In conclusion, distemper inclusions bodies in RBCs from EBC is a recommended diagnosis method in patients suspected of canine Distemper infection. The observation being more frequent in the EBC in comparison with WB, commonly used in veterinary hematology.


2017 ◽  
Author(s):  
John Dou ◽  
Rebecca J. Schmidt ◽  
Kelly S. Benke ◽  
Craig Newschaffer ◽  
Irva Hertz-Picciotto ◽  
...  

AbstractBackgroundCord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells by generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability.ObjectivesTo evaluate differences in cell composition and DNA methylation between buffy coat and whole cord blood samples.MethodsCord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in 8 individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition.ResultsDNA methylation PCs were associated with individual (PPC1=1.4x10-9; PPC2=2.9x10-5; PPC3=3.8x10-5; PPC4=4.2x10-6; PPC5=9.9x10-13), and not with sample type (PPC1-5>0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired individual samples ranged from r=0.66 to r=0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (5 sites had unadjusted P<10-5). Estimated cell type proportions did not differ by sample type (P=0.86), and estimated cell counts were highly correlated between paired samples (r=0.99).ConclusionsDifferences in methylation and cell composition between buffy coat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.


Transfusion ◽  
2003 ◽  
Vol 43 (12) ◽  
pp. 1723-1728 ◽  
Author(s):  
Maria L. Lozano ◽  
Elena Pérez-Ceballos ◽  
Jose Rivera ◽  
Dragica Paunovic ◽  
Maria J. Candela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document