scholarly journals Treatment of intact striatal neurones with cholera toxin or 8-bromoadenosine 3',5'-(cyclic)phosphate decreases the ability of pertussis toxin to ADP-ribosylate the alpha-subunits of inhibitory and other guanine-nucleotide-binding regulatory proteins, Gi and Go. Evidence for two distinct mechanisms

1991 ◽  
Vol 196 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Marion MAUS ◽  
Vincent HOMBURGER ◽  
Jocelyne CORDIER ◽  
Colette PANTALONI ◽  
Joel BOCKAERT ◽  
...  
1991 ◽  
Vol 280 (2) ◽  
pp. 515-519 ◽  
Author(s):  
J A Sokoloski ◽  
A C Sartorelli ◽  
R E Handschumacher ◽  
C W Lee

The effects of pertussis toxin on the Na(+)-dependent transport of uridine were studied in HL-60 leukaemia cells induced to differentiate along the granulocytic or monocytic pathways by dimethyl sulphoxide (DMSO) or phorbol 12-myristate 13-acetate (PMA) respectively. Pertussis toxin at 50 ng/ml completely inhibited the activation of Na(+)-dependent uridine transport and consequently prevented the formation of intracellular pools of free uridine which occurs in HL-60 cells induced to differentiate by DMSO. The inhibition of Na(+)-dependent uridine transport by pertussis toxin in cells exposed to DMSO was associated with a 14-fold decrease in affinity, with no change in Vmax. Pertussis toxin, however, had no effect on Na(+)-dependent uridine transport in PMA-induced HL-60 cells. Furthermore, 500 ng of cholera toxin/ml had no effect on the Na(+)-dependent uptake of uridine in DMSO-treated HL-60 cells. These results suggest that the activation of the Na(+)-dependent transport of uridine in HL-60 cells induced to differentiate along the granulocytic pathway by DMSO is coupled to a pertussis-toxin-sensitive guanine-nucleotide binding protein (G-protein).


1987 ◽  
Vol 84 (21) ◽  
pp. 7493-7497 ◽  
Author(s):  
J. E. Buss ◽  
S. M. Mumby ◽  
P. J. Casey ◽  
A. G. Gilman ◽  
B. M. Sefton

1989 ◽  
Vol 262 (2) ◽  
pp. 403-408 ◽  
Author(s):  
F M Mitchell ◽  
S L Griffiths ◽  
E D Saggerson ◽  
M D Houslay ◽  
J T Knowler ◽  
...  

Considerable debate has focused on the molecular identity of the guanine-nucleotide-binding proteins (G-proteins) in adipose tissue which can be detected following pertussis-toxin-catalysed ADP-ribosylation [Rapiejko, Northup, Evans, Brown & Malbon (1986) Biochem. J. 240, 35-40; Hinsch, Rosenthal, Spicher, Binder, Gausepohl, Frank, Schultz & Joost (1988) FEBS Lett. 238, 191-196]. We have used a panel of selective anti-peptide antisera which are able to discriminate between the different pertussis-toxin-sensitive G-proteins to assess which of these are expressed in rat adipose tissue. We demonstrate that plasma membranes of rat white adipocytes contain alpha subunits corresponding to each of Gi1, Gi2 and Gi3. Furthermore, using synthetic oligonucleotides complimentary to unique regions of each of the three polypeptides, we demonstrate that the mRNAs for the three G-protein alpha subunits can also be detected in adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document