scholarly journals Trimethylphosphine binding to horse-heart and sperm-whale myoglobins. Kinetics, proton magnetic resonance assignment and nuclear Overhauser effect investigation of the heme pocket

1993 ◽  
Vol 214 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Christian BRUNEL ◽  
Arnaud BONDON ◽  
Gerard SIMONNEAUX
1986 ◽  
Vol 64 (10) ◽  
pp. 1998-2005 ◽  
Author(s):  
E. Kiehlmann ◽  
A. S. Tracey

The 1Hmr spectra of 20 catechin derivatives substituted at C-6/C-8 by bromine and/or hydrogen and at oxygen by methyl, acetyl, and/or hydrogen have been analyzed in deuterated acetone, acetonitrile, and chloroform. Because of its dependence on the nature of the solvent and of the oxygen substituent, the difference between H-6 and H-8 chemical shifts has been found to be an unreliable criterion for the distinction between 8-bromo and 6-bromo isomers. In methylated catechins, double irradiation of H-8 and H-6 enhances one (MeO-7) and two (MeO-5 and MeO-7) methoxy signals, respectively, via the nuclear Overhauser effect. This permits unambiguous assignment of chemical shifts to all ring A protons. The H-6 and H-8 resonance frequencies of catechin have been determined by decoupling of the OH-5 and OH-7 protons.


1981 ◽  
Vol 59 (10) ◽  
pp. 1449-1454 ◽  
Author(s):  
George Kotovych ◽  
Gerdy H. M. Aarts ◽  
Tom T. Nakashima

High-field nuclear Overhauser effect difference measurements allowed the assignment of the proton resonances for (6S)-prostaglandin I1 in phosphate buffer solutions. The two-dimensional J proton magnetic resonance experiments complemented these studies, as they also allowed the structure of several multiplets to be obtained when these multiplets are hidden by nearby resonances in a normal spectrum. The chemical shifts and coupling constants are compared with the data obtained previously for (6R)-prostaglandin I1.


1989 ◽  
Vol 67 (8) ◽  
pp. 1302-1304 ◽  
Author(s):  
Albert Stoessl ◽  
G. L. Rock ◽  
J. B. Stothers

A tricyclic diene, traversiadiene, isolated from cultures of Cercosporatraversiana has been shown to have the structure and stereochemistry of the previously postulated hydrocarbon intermediate on the biosynthetic pathway to traversianal (1). Detailed:1H and 13C magnetic resonance studies, including homo- and heteronuclear correlation spectra, led to the gross structure, and the stereochemistry was established through a series of nuclear Overhauser effect difference spectra. Keywords: diterpene, traversiadiene, 1H and 13C magnetic resonance spectra.


2020 ◽  
Vol 35 (2) ◽  
pp. 264-273
Author(s):  
Fu-Hu Su ◽  
Wang-Chuan Xiao ◽  
Sheann-Huei Lin ◽  
Qiyong Li

With good contrast in T1 and T2 weighted imaging as well as low toxicity in 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, this work proposes the cross-linked polydimethylsiloxane colloids as a novel non-ionic contrast agent for gastrointestinal magnetic resonance imaging. The experiments of nuclear magnetic resonance spectra and relaxation show that within the interface of the colloids, there are nuclear Overhauser effect and transient nuclear Overhauser effect (cross-relaxation). Regarding the longitudinal relaxation experiments of CH2CH2O segments of Tween 80, a two spins system is found and modeled well by the equation [Formula: see text] which is deduced based on the transient nuclear Overhauser effect proposed by Solomon. The arbitrary constant X is additionally added with the initial conditions ( Iz −  I0) t=0 = −2 XS0 and ( Sz −  S0) t=0 = −2 S0. For the two spins system, D1 and T1 are corresponding to longitudinal relaxation times of the bound water and the CH2CH2O respectively. Concerning the transverse relaxation experiments of the CH2CH2O, they agree with the equation with three exponential decays, defined by three relaxation times, likely corresponding to three mechanisms. These mechanisms possibly are intramolecular and intermolecular dipole–dipole (DD) interactions and scalar coupling. Within the interface, hydrogen bonding causes the positive nuclear Overhauser effect of the CH2CH2O’s nuclear magnetic resonance spectra, the transient nuclear Overhauser effect of the CH2CH2O’s longitudinal relaxation experiments and the intermolecular dipole–dipole interactions of the CH2CH2O’s transverse relaxation experiments.


Sign in / Sign up

Export Citation Format

Share Document