scholarly journals Soluble saccharides block the inhibition of agonist-induced human platelet aggregation observed after in vitro incubation of human platelet-rich plasma with porcine aortic endothelial cells

1998 ◽  
Vol 11 (5) ◽  
pp. 345-352 ◽  
Author(s):  
Stefan Magnusson ◽  
Egidio L. Romano ◽  
Eva Hallberg ◽  
Hans Wadenvik ◽  
Michael E. Breimer
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Irvin Tubon ◽  
Chiara Bernardini ◽  
Fabiana Antognoni ◽  
Roberto Mandrioli ◽  
Giulia Potente ◽  
...  

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 μg/ml); no viability alterations were found in the 10-50 μg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 μg/ml of extract caused a significant increase in pAEC’s migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions’ number. On the other hand, CTEE at 100 μg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 μg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.


2001 ◽  
Vol 75 (21) ◽  
pp. 10372-10382 ◽  
Author(s):  
Isabelle Vallée ◽  
Stephen W. G. Tait ◽  
Penelope P. Powell

ABSTRACT African swine fever (ASF) is an asymptomatic infection of warthogs and bushpigs, which has become an emergent disease of domestic pigs, characterized by hemorrhage, lymphopenia, and disseminated intravascular coagulation. It is caused by a large icosohedral double-stranded DNA virus, African swine fever virus (ASFV), with infection of macrophages well characterized in vitro and in vivo. This study shows that virulent isolates of ASFV also infect primary cultures of porcine aortic endothelial cells and bushpig endothelial cells (BPECs) in vitro. Kinetics of early and late gene expression, viral factory formation, replication, and secretion were similar in endothelial cells and macrophages. However, ASFV-infected endothelial cells died by apoptosis, detected morphologically by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and nuclear condensation and biochemically by poly(ADP-ribose) polymerase (PARP) cleavage at 4 h postinfection (hpi). Immediate-early proinflammatory responses were inhibited, characterized by a lack of E-selectin surface expression and interleukin 6 (IL-6) and IL-8 mRNA synthesis. Moreover, ASFV actively downregulated interferon-induced major histocompatibility complex class I surface expression, a strategy by which viruses evade the immune system. Significantly, Western blot analysis showed that the 65-kDa subunit of the transcription factor NF-κB, a central regulator of the early response to viral infection, decreased by 8 hpi and disappeared by 18 hpi. Both disappearance of NF-κB p65 and cleavage of PARP were reversed by the caspase inhibitor z-VAD-fmk. Interestingly, surface expression and mRNA transcription of tissue factor, an important initiator of the coagulation cascade, increased 4 h after ASFV infection. These data suggest a central role for vascular endothelial cells in the hemorrhagic pathogenesis of the disease. Since BPECs infected with ASFV also undergo apoptosis, resistance of the natural host must involve complex pathological factors other than viral tropism.


2008 ◽  
Vol 86 (5) ◽  
pp. 733-737 ◽  
Author(s):  
Mohamed Ezzelarab ◽  
Daniel Welchons ◽  
Corine Torres ◽  
Hidetaka Hara ◽  
Cassandra Long ◽  
...  

1995 ◽  
Vol 77 (5) ◽  
pp. 399-410 ◽  
Author(s):  
Giovanni Anfossi ◽  
Simona Parisi ◽  
Isabella Russo ◽  
Elena M. Mularoni ◽  
Paola Massucco ◽  
...  

2001 ◽  
Vol 72 (12) ◽  
pp. 1967-1973 ◽  
Author(s):  
Una ??. S??lvik ◽  
Guttorm Haraldsen ◽  
Arnt E. Fiane ◽  
Eva Boretti ◽  
John D. Lambris ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2107-2107
Author(s):  
Guangheng Zhu ◽  
Michelle Lee Webster ◽  
Adili Reheman ◽  
Pingguo Chen ◽  
Ebrahim Sayeh ◽  
...  

Abstract Background: Platelets are critical for maintaining hemostasis, but inappropriate platelet activation can lead to pathogenic thrombosis. It has been demonstrated that the platelet integrin αIIbβ3 is essential for platelet aggregation and is also a major target antigen in immune thrombocytopenias (e.g. ITP). Current monoclonal antibodies (mAbs) against this protein complex have been generated using traditional methods involving cross-species immunization (e.g. mouse proteins into rat hosts). These approaches may generate a limited repertoire of anti-β3 mAbs since the antigenicity of the protein and the variety of epitopes targeted are based on amino acid sequence differences between the two species and integrin family members are highly conserved. Additionally, studies in murine models of ITP are hampered by the use of xenogeneic antibodies rather than syngeneic antibodies. Methods: We developed a method to generate mouse anti-mouse β3 integrin mAbs utilising β3 gene deficient mice (β3−/−) immunized with wild-type platelets. To generate antibodies specific to the PSI domain (HPA-1 region) of β3 integrin, β3−/− mice were immunized with the recombinant murine PSI domain of β3 integrin. Platelet binding and specificity were determined by flow cytometry and western blot. In vitro effects on platelet function were measured using aggregometry. Different doses of mAbs (5, 10, and 15 μg/mouse) were injected intravenously to induce thrombocytopenia in vivo. Results: A total of twelve mAbs were generated against native β3 integrin (JAN A1, B1, C1, D1 and DEC A1 and B1, 9D2, M1) or recombinant PSI domain (PSI A1, B1, C1, E1). The mAbs were specific for β3 integrin; no binding was observed using β3−/− platelets. Isotyping showed that DEC A1 and DEC B1 are IgG3, PSI E1 is IgG2b, and all other mAbs are IgG1. The anti-PSI domain mAbs recognized linear epitopes and the anti-native β3 mAbs recognized conformational epitopes. All mAbs, with the exception of JAN A1 and B1, cross-reacted with human platelets. JAN C1, JAN D1, DEC A1, 9D2, M1, and all anti-PSI antibodies inhibited mouse platelet aggregation. These antibodies, except DEC A1, 9D2 and M1, also inhibited human platelet aggregation. One anti-PSI domain antibody (PSI B1), however, directly induced human platelet aggregation in the absence of agonist in platelet rich plasma but not in PIPES buffer. This suggests that PSI B1 may initiate conformational changes in β3 integrin and promote fibrinogen binding. Six anti-β3 mAbs (JAN A1, B1, C1 and D1, 9D2 and M1) induced severe dose-dependent thrombocytopenia in mice, while the anti-PSI domain mAbs induced only a mild decrease in platelet count. Interestingly, the two IgG3 mAbs (DEC A1 and B1) did not induce thrombocytopenia. Conclusion: This approach to generating mouse anti-mouse β3 integrin mAbs using β3−/− mice was successful. Different anti-β3 mAbs had different effects on platelet aggregation, and on the induction of thrombocytopenia. These mAbs may be useful reagents for research in thrombosis and immune thrombocytopenia and as novel anti-thrombotic therapeutics.


Sign in / Sign up

Export Citation Format

Share Document