Expression of the Orexigenic Peptide Ghrelin and the Type 1a Growth Hormone Secretagogue Receptor in Sheep Oocytes and Pre-implantation Embryos ProducedIn Vitro

2010 ◽  
Vol 45 (1) ◽  
pp. 92-98 ◽  
Author(s):  
C Du ◽  
H Li ◽  
G Cao ◽  
Xilingaowa ◽  
C Wang ◽  
...  
Endocrinology ◽  
2017 ◽  
Vol 159 (2) ◽  
pp. 1021-1034 ◽  
Author(s):  
Gimena Fernandez ◽  
Agustina Cabral ◽  
María F Andreoli ◽  
Alexandra Labarthe ◽  
Céline M'Kadmi ◽  
...  

Abstract Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein–coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone–releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance.


2021 ◽  
Vol 22 (7) ◽  
pp. 3763
Author(s):  
Chihiro Yamada

Growth hormone secretagogue receptor 1a (GHS-R1a), which is one of the G protein-coupled receptors (GPCRs), is involved in various physiological actions such as energy consumption, growth hormone secretion promoting action, and cardiovascular protective action. The ligand was searched for as an orphan receptor for a while, but the ligand was found to be acylated ghrelin (ghrelin) discovered by Kangawa and Kojima et al. in 1999. Recently, it has also been reported that dysregulation of GHS-R1a mediates reduced feeding in various diseases. On the other hand, since the physiological effects of ghrelin have been studied exclusively in male mice, few studies have been conducted on gender differences in ghrelin reactivity. In this review, we describe (1) the characteristics of GHS-R1a, (2) the role of ghrelin in hypophagia due to stress or anticancer drugs, and (3) the gender differences in the physiological effects of GHS-R1a and the influence of stress on it.


2020 ◽  
Vol 119 ◽  
pp. 104718
Author(s):  
María Paula Cornejo ◽  
Franco Barrile ◽  
Daniela Cassano ◽  
Julieta Paola Aguggia ◽  
Guadalupe García Romero ◽  
...  

ChemInform ◽  
2005 ◽  
Vol 36 (4) ◽  
Author(s):  
Bo Liu ◽  
Gang Liu ◽  
Zhili Xin ◽  
Michael D. Serby ◽  
Hongyu Zhao ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiyao Zhang ◽  
Wensong Li ◽  
Ping Li ◽  
Manli Chang ◽  
Xu Huang ◽  
...  

As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.


2011 ◽  
Vol 172 (1-3) ◽  
pp. 69-76 ◽  
Author(s):  
Rebecca McGirr ◽  
Mark S. McFarland ◽  
Jillian McTavish ◽  
Leonard G. Luyt ◽  
Savita Dhanvantari

2010 ◽  
Vol 138 (5) ◽  
pp. S-256
Author(s):  
Bunzo Matsuura ◽  
Sachiko Utsunomiya ◽  
Teruhisa Ueda ◽  
Teruki Miyake ◽  
Shinya Furukawa ◽  
...  

2009 ◽  
Vol 123 (5) ◽  
pp. 1058-1065 ◽  
Author(s):  
Alexander W. Johnson ◽  
Rebecca Canter ◽  
Michela Gallagher ◽  
Peter C. Holland

Sign in / Sign up

Export Citation Format

Share Document