ghrelin receptor
Recently Published Documents


TOTAL DOCUMENTS

583
(FIVE YEARS 119)

H-INDEX

56
(FIVE YEARS 6)

2022 ◽  
Vol 119 (3) ◽  
pp. e2115082119
Author(s):  
Min Hee Park ◽  
Kang Ho Park ◽  
Byung Jo Choi ◽  
Wan Hui Han ◽  
Hee Ji Yoon ◽  
...  

Alzheimer’s disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment. KARI 201 exhibits highly selective inhibition effects on ASM, with excellent pharmacokinetic properties, especially with regard to brain distribution. Unexpectedly, we found another role of KARI 201 as a ghrelin receptor agonist, which also has therapeutic potential for AD treatment. This dual role of KARI 201 in neurons efficiently rescued neuropathological features in AD mice, including amyloid beta deposition, autophagy dysfunction, neuroinflammation, synaptic loss, and decreased hippocampal neurogenesis and synaptic plasticity, leading to an improvement in memory function. Our data highlight the possibility of potential clinical application of KARI 201 as an innovative and multifaceted drug for AD treatment.


2022 ◽  
Vol 23 (1) ◽  
pp. 559
Author(s):  
Iris Stoltenborg ◽  
Fiona Peris-Sampedro ◽  
Erik Schéle ◽  
Marie V. Le May ◽  
Roger A. H. Adan ◽  
...  

The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Iwona Szczerbinska ◽  
Annamaria Tessitore ◽  
Lena Kristina Hansson ◽  
Asmita Agrawal ◽  
Alejandro Ragel Lopez ◽  
...  

Type 2 diabetes (T2D) is a chronic metabolic disorder affecting almost half a billion people worldwide. Impaired function of pancreatic β-cells is both a hallmark of T2D and an underlying factor in the pathophysiology of the disease. Understanding the cellular mechanisms regulating appropriate insulin secretion has been of long-standing interest in the scientific and clinical communities. To identify novel genes regulating insulin secretion we developed a robust arrayed siRNA screen measuring basal, glucose-stimulated, and augmented insulin secretion by EndoC-βH1 cells, a human β-cell line, in a 384-well plate format. We screened 521 candidate genes selected by text mining for relevance to T2D biology and identified 23 positive and 68 negative regulators of insulin secretion. Among these, we validated ghrelin receptor (GHSR), and two genes implicated in endoplasmic reticulum stress, ATF4 and HSPA5. Thus, we have demonstrated the feasibility of using EndoC-βH1 cells for large-scale siRNA screening to identify candidate genes regulating β-cell insulin secretion as potential novel drug targets. Furthermore, this screening format can be adapted to other disease-relevant functional endpoints to enable large-scale screening for targets regulating cellular mechanisms contributing to the progressive loss of functional β-cell mass occurring in T2D.


2021 ◽  
Vol 13 (12) ◽  
pp. 1708-1720
Author(s):  
Sanja Stojsavljevic-Shapeski ◽  
Lucija Virovic-Jukic ◽  
Davor Tomas ◽  
Marko Duvnjak ◽  
Vedran Tomasic ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
An Buckinx ◽  
Dimitri De Bundel ◽  
Ron Kooijman ◽  
Ilse Smolders

Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 1
Author(s):  
Mélissa Shen ◽  
Claudia Manca ◽  
Francesco Suriano ◽  
Nayudu Nallabelli ◽  
Florent Pechereau ◽  
...  

The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet—or genetic leptin signaling deficiency—(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.


Author(s):  
Zhi-Bing You ◽  
Ewa Galaj ◽  
Francisco Alén ◽  
Bin Wang ◽  
Guo-Hua Bi ◽  
...  

AbstractCocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chihiro Yamada ◽  
Tomohisa Hattori ◽  
Shunsuke Ohnishi ◽  
Hiroshi Takeda

Rikkunshito is a Japanese herbal medicine (Kampo) that has been attracting attention and researched by many researchers not only in Japan but also worldwide. There are 214 rikkunshito articles that can be searched on PubMed by August 2021. The reason why rikkunshito has attracted so much attention is due to an epoch-making report (Gastroenterology, 2008) discovered that rikkunshito promotes the secretion of the orexigenic peptide ghrelin. Since then, many researchers have discovered that rikkunshito has a direct effect on the ghrelin receptor, GHS-R1a, and an effect of enhancing the ghrelin signal to the brain. Additionally, a lot of evidence that rikkunshito is expected to be effective for various gastrointestinal diseases have also been demonstrated. Numerous basic and clinical studies have suggested that rikkunshito affects (i) various discomforts caused by anticancer drugs, gastroesophageal reflux disease, functional dyspepsia, (ii) various stress-induced anorexia, (iii) hypophagia in the elderly, and (iv) healthy lifespan. In this review, as one who discovered the ghrelin enhancer effect of rikkunshito, we will review the research of rikkunshito so far and report on the latest research results.


2021 ◽  
Vol 15 ◽  
Author(s):  
Olesya T. Shevchouk ◽  
Maximilian Tufvesson-Alm ◽  
Elisabet Jerlhag

There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.


Sign in / Sign up

Export Citation Format

Share Document