EFFECTS OF NEUROPEPTIDE Y ON BAROREFLEX CONTROL OF HEART RATE AND MYOCARDIAL CONTRACTILITY IN CONSCIOUS RABBITS

Author(s):  
R. B. Minson ◽  
R. J. McRitchie ◽  
J. P. Chalmers
1998 ◽  
Vol 274 (4) ◽  
pp. R1142-R1149 ◽  
Author(s):  
Kiyoshi Matsumura ◽  
Isao Abe ◽  
Takuya Tsuchihashi ◽  
Masatoshi Fujishima

We examined the role of central nitric oxide (NO) in the baroreceptor reflex in conscious rabbits. Intracerebroventricular infusion of 20 μmol of N ω-nitro-l-arginine methyl ester (l-NAME) to block central NO resulted in increases in arterial pressure, renal sympathetic nerve activity (RSNA), and plasma catecholamine levels, and the pressor response was suppressed by pretreatment with pentolinium (5 mg/kg iv). On the other hand, a subpressor dose of intracerebroventricular l-NAME (10 μmol/h) caused significant increases in baroreflex sensitivities assessed by RSNA and heart rate compared with vehicle infusion [maximum gain: −18.2 ± 0.9 vs. −9.6 ± 0.9%/mmHg ( P < 0.001) and −14.3 ± 2.3 vs. −5.7 ± 0.4 beats ⋅ min−1 ⋅ mmHg−1( P < 0.05), respectively]. Conversely, an intracerebroventricular infusion of Et2N[N(O)NO]Na, an NO donor (1 μmol/h) significantly attenuated the baroreflex sensitivities. However, intracerebroventricular infusion of N ω-nitro-d-arginine methyl ester (10 μmol/h), an enantiomer ofl-NAME, failed to alter the baroreflex sensitivities. These results suggest that 1) the pressor response induced by inhibition of central NO synthesis is mainly mediated by the enhanced sympathetic outflow and 2) central NO attenuates the baroreflex control of RSNA and heart rate in conscious rabbits.


1986 ◽  
Vol 64 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Alain Edouard ◽  
Alain Berdeaux ◽  
Joël Langloys ◽  
Kamran Samil ◽  
Jean F. Giudicelli ◽  
...  

1978 ◽  
Vol 55 (s4) ◽  
pp. 65s-68s ◽  
Author(s):  
D. Cousineau ◽  
J. de Champlain ◽  
L. Lapointe

1. Average supine circulating total catecholamine concentrations were found to be higher than the normal range in about 50% of patients with labile hypertension and in about 30% of patients with sustained essential hypertension. 2. These higher resting concentrations were mainly due to an increase in adrenaline in labile hypertension and to an increase in noradrenaline in sustained hypertension. 3. Patients with elevated catecholamine concentrations were also characterized by a higher heart rate, by an increased myocardial contractility and by greater hypotensive response after treatment with β-adrenoreceptor blocking agents. 4. These studies suggest the existence of subgroups of hypertensive patients with increased sympathetic tone.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Radu Iliescu ◽  
Ionut Tudorancea ◽  
Eric Irwin ◽  
Thomas Lohmeier

Impaired baroreflex control of heart rate (BRS) and attendant risk for cardiac arrhythmias are associated with sympathetically-mediated obesity hypertension. Since both global and renal-specific sympathoinhibition have sustained antihypertensive effects in obesity, we compared BRS in obese dogs subjected to 7 days of electrical baroreflex activation (BA) and, after recovery (REC), to bilateral surgical renal denervation (RDX). After control (C) measurements and 4 weeks of high fat diet, fat intake was reduced (RF) to maintain a body weight increase of ∼ 50%, which led to an increase in mean arterial pressure (MAP) from 100±2 to 117±3 mmHg and heart rate (HR) from 86±3 to 130±4 bpm. Obesity hypertension was associated with decreased sensitivity of 24h spontaneous BRS (determined by the sequence technique from daily beat-to-beat time series) and pulse interval (PI) variability (24h SD). While both BA and RDX abolished hypertension, only BA diminished tachycardia and normalized BRS, consequently improving HR variability. Short-term systolic blood pressure variability (5 min SD) also decreased with high fat feeding and was restored to control upon reduction of fat intake (RF) during established obesity hypertension, suggesting a vasoplegic effect of fat. These data suggest that in addition to the antihypertensive effects of sympathoinhibition, BA corrects cardiac baroreflex dysfunction in obesity hypertension, presumably by enhancing cardiac vagal activity. This in turn markedly improves depressed HR variability, a known risk factor for cardiac arrhythmic events.


1981 ◽  
Vol 241 (4) ◽  
pp. H571-H575 ◽  
Author(s):  
G. E. Billman ◽  
D. T. Dickey ◽  
K. K. Teoh ◽  
H. L. Stone

The purpose of this study was to investigate the effects of anesthesia, body position, and blood volume expansion on baroreflex control of heart rate. Five male rhesus monkeys (7.0-10.5 kg) were given bolus injection of 4.0 micrograms/kg phenylephrine during each of the following situations: awake sitting, anesthetized (AN) (10 mg/kg ketamine-HCl) sitting, AN recumbent, AN 90 degrees head down tilt, and AN 50% blood volume expansion with normal saline. beta-Receptor blockade was also performed on each treatment after anesthesia. Four additional animals were similarly treated after 20% blood volume expansion. R-R interval was plotted against systolic aortic pressure, and the slope was determined by linear regression. Baroreflex slope was significantly (P less than 0.05) reduced by 90 degrees head down tilt and 50% volume expansion both before and after beta-receptor blockade. A similar trend was seen after 20% volume expansion. These data are consistent with the thesis that baroreflex control of heart rate is reduced by central blood volume shifts.


Sign in / Sign up

Export Citation Format

Share Document