IDENTIFICATION AND CHARACTERIZATION OF THE MOUSE AND RAT RELAXIN RECEPTORS AS THE NOVEL ORTHOLOGUES OF HUMAN LEUCINE-RICH REPEAT-CONTAINING G-PROTEIN-COUPLED RECEPTOR 7

2004 ◽  
Vol 31 (11) ◽  
pp. 828-832 ◽  
Author(s):  
DJ Scott ◽  
S Layfield ◽  
A Riesewijk ◽  
H Morita ◽  
GW Tregear ◽  
...  
Endocrinology ◽  
2000 ◽  
Vol 141 (11) ◽  
pp. 4081-4090 ◽  
Author(s):  
Shinya Nishi ◽  
Sheau Yu Hsu ◽  
Karen Zell ◽  
Aaron J. W. Hsueh

Abstract The receptors for lutropin (LH), FSH, and TSH belong to the large G protein-coupled receptor (GPCR) superfamily and are unique in having a large N-terminal extracellular (ecto-) domain important for interactions with the large glycoprotein hormone ligands. Recent studies indicated the evolution of a large family of the leucine-rich repeat-containing, G protein-coupled receptors (LGRs) with at least seven members in mammals. Based on the sequences of mammalian glycoprotein hormone receptors, we have identified a new LGR in Drosophila melanogaster and named it as fly LGR2 to distinguish it from the previously reported fly LH/FSH/TSH receptor (renamed as fly LGR1). Genomic analysis indicated the presence of 10 exons in fly LGR2 as compared with 16 exons in fly LGR1. The deduced fly LGR2 complementary DNA (cDNA) showed 43 and 64% similarity to the fly LGR1 in the ectodomain and transmembrane region, respectively. Comparison of 12 LGRs from diverse species indicated that these proteins can be divided into three subfamilies and fly LGR1 and LGR2 belong to different subfamilies. Potential signaling mechanisms were tested in human 293T cells overexpressing the fly receptors. Of interest, fly LGR1, but not LGR2, showed constitutive activity as reflected by elevated basal cAMP production in transfected cells. The basal activity of fly LGR1 was further augmented following point mutations of key residues in the intracellular loop 3 or transmembrane VI, similar to those found in patients with familial male precocious puberty. The present study reports the cloning of fly LGR2 and indicates that the G protein-coupling mechanism is conserved in fly LGR1 as compared with the mammalian glycoprotein hormone receptors. The characterization of fly receptors with features similar to mammalian glycoprotein hormone receptors allows a better understanding of the evolution of this unique group of GPCRs and future elucidation of their ligand signaling mechanisms.


1997 ◽  
Vol 71 (2) ◽  
pp. 1521-1529 ◽  
Author(s):  
N J Davis-Poynter ◽  
D M Lynch ◽  
H Vally ◽  
G R Shellam ◽  
W D Rawlinson ◽  
...  

2003 ◽  
Vol 278 (30) ◽  
pp. 27652-27657 ◽  
Author(s):  
Ying Jiang ◽  
Lin Luo ◽  
Eric L. Gustafson ◽  
Deepmala Yadav ◽  
Maureen Laverty ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Sarah C. Erlandson ◽  
Shaun Rawson ◽  
Andrew C. Kruse

Molecules ◽  
2014 ◽  
Vol 19 (10) ◽  
pp. 16937-16949 ◽  
Author(s):  
Kristoff Homan ◽  
Emily Wu ◽  
Alessandro Cannavo ◽  
Walter Koch ◽  
John Tesmer

Sign in / Sign up

Export Citation Format

Share Document