leucine rich repeat
Recently Published Documents


TOTAL DOCUMENTS

1485
(FIVE YEARS 330)

H-INDEX

108
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ke Xu ◽  
Joris Jourquin ◽  
Maria Fransiska Njo ◽  
Long Nguyen ◽  
Tom Beeckman ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) play fundamental roles in cell-to-cell and plant-environment communication. LRR-RLKs can function as receptors perceiving endogenous or external ligands, or as coreceptors, which stabilize the complex, and enhance transduction of the intracellular signal. The LRR-RLK BAK1 is a coreceptor for different developmental and immunity pathways. In this article, we identified PXY-CORRELATED 3 (PXC3) as a BAK1-interacting LRR-RLK, which was previously reported to be transcribed in vascular tissues co-expressed with PHLOEM INTERCALATED WITH XYLEM (PXY), the receptor of the TDIF/CLE41 peptide. Characterization of pxc3 loss-of-function mutants revealed reduced hypocotyl stele width and vascular cells compared to wild type, indicating that PXC3 plays a role in the vascular development in Arabidopsis. Furthermore, our data suggest that PXC3 might function as a positive regulator of the CLE41/TDIF–TDR/PXY signaling pathway.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
George C. Markou ◽  
Casim A. Sarkar

AbstractPlant immune receptors are often difficult to express heterologously, hindering study of direct interactions between these receptors and their targets with traditional biochemical approaches. The cell-free method ribosome display (RD) enables expression of such recalcitrant proteins by keeping each nascent polypeptide chain tethered to its ribosome, which can enhance protein folding by virtue of its size and solubility. Moreover, in contrast to an in planta readout of receptor activity such as a hypersensitive response that conflates binding and signaling, RD enables direct probing of the interaction between plant immune receptors and their targets. Here, we demonstrate the utility of this approach using tomato recognition of Trichoderma viride ethylene-inducing xylanase (EIX) as a case study. Leveraging the modular nature of the tomato LeEIX2 and LeEIX1 leucine-rich repeat (LRR) receptors, we applied an entropy-informed algorithm to maximize the information content in our receptor segmentation RD experiments to identify segments implicated in EIX binding. Unexpectedly, two distinct EIX-binding hotspots were discovered on LeEIX2 and both hotspots are shared with decoy LeEIX1, suggesting that their contrasting receptor functions are not due to differential modes of ligand binding. Given that most plant immune receptors are thought to engage targets via their LRR sequences, this approach should be of broad utility in rapidly identifying their binding hotspots.


2022 ◽  
Vol 12 ◽  
Author(s):  
Md Al Mamun ◽  
Md Tabibul Islam ◽  
Bok-Rye Lee ◽  
Dong-Won Bae ◽  
Tae-Hwan Kim

To characterize cultivar variations in hormonal regulation of the transition between pattern-triggered immunity (PTI) and effector-triggered immunity or susceptibility (ETI or ETS), the responses of resistance (R-) genes, hydrogen peroxide, and proline metabolism in two Brassica napus cultivars to contrasting disease susceptibility (resistant cv. Capitol vs. susceptible cv. Mosa) were interpreted as being linked to those of endogenous hormonal levels and signaling genes based on a time course of disease symptom development. Disease symptoms caused by the Xanthomonas campestris pv. campestris (Xcc) infections were much more developed in cv. Mosa than in cv. Capitol, as shown by an earlier appearance (at 3 days postinoculation [3 DPI]) and larger V-shaped necrosis lesions (at 9–15 DPI) in cv. Mosa. The cultivar variations in the R-genes, hormone status, and proline metabolism were found in two different phases (early [0–3 DPI] and later [9–15 DPI]). In the early phase, Xcc significantly upregulated PTI-related cytoplasmic kinase (Botrytis-induced kinase-1 [BIK1]) expression (+6.3-fold) with salicylic acid (SA) accumulation in cv. Capitol, while relatively less (+2.6-fold) with highly increased jasmonic acid (JA) level in cv. Mosa. The Xcc-responsive proline accumulation in both cultivars was similar to upregulated expression of proline synthesis-related genes (P5CS2 and P5CR). During the later phase in cv. Capitol, Xcc-responsive upregulation of ZAR1 (a coiled-coil-nucleotide binding site-leucine-rich repeat [CC-NB-LRR-type R-gene]) was concomitant with a gradual increase in JA levels without additional proline accumulation. However, in cv. Mosa, upregulation of TAO1 (a toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat [TIR-NB-LRR-type R-gene]) was consistent with an increase in SA and abscisic acid (ABA) levels and resulted in an antagonistic depression of JA, which led to a proline accumulation. These results indicate that Xcc-induced BIK1- and ZAR1-mediated JA signaling interactions provide resistance and confirm ETI, whereas BIK1- and TAO1-enhanced SA- and/or ABA-mediated proline accumulation is associated with disease susceptibility (ETS).


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Zhenya Liu ◽  
Zirui Ren ◽  
Lunyi Yan ◽  
Feng Li

Members of the leucine-rich repeat (LRR) superfamily play critical roles in multiple biological processes. As the LRR unit sequence is highly variable, accurately predicting the number and location of LRR units in proteins is a highly challenging task in the field of bioinformatics. Existing methods still need to be improved, especially when it comes to similarity-based methods. We introduce our DeepLRR method based on a convolutional neural network (CNN) model and LRR features to predict the number and location of LRR units in proteins. We compared DeepLRR with six existing methods using a dataset containing 572 LRR proteins and it outperformed all of them when it comes to overall F1 score. In addition, DeepLRR has integrated identifying plant disease-resistance proteins (NLR, LRR-RLK, LRR-RLP) and non-canonical domains. With DeepLRR, 223, 191 and 183 LRR-RLK genes in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa ssp. Japonica) and tomato (Solanum lycopersicum) genomes were re-annotated, respectively. Chromosome mapping and gene cluster analysis revealed that 24.2% (54/223), 29.8% (57/191) and 16.9% (31/183) of LRR-RLK genes formed gene cluster structures in Arabidopsis, rice and tomato, respectively. Finally, we explored the evolutionary relationship and domain composition of LRR-RLK genes in each plant and distributions of known receptor and co-receptor pairs. This provides a new perspective for the identification of potential receptors and co-receptors.


Author(s):  
Zhangwang Li ◽  
Xinyue Chen ◽  
Junjie Tao ◽  
Ao Shi ◽  
Jing Zhang ◽  
...  

Emerging evidence has suggested the unique and critical role of exosomes as signal molecules vector in various diseases. Numerous researchers have been trying to identify how these exosomes function in immune progression, as this could promote their use as biomarkers for the disease process and potential promising diagnostic tools. NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3), a tripartite protein, contains three functional domains a central nucleotide-binding and oligomerization domain (NACHT), an N-terminal pyrin domain (PYD), and a leucine-rich repeat domain (LRR). Of note, existing studies have identified exosome as a novel mediator of the NLRP3 inflammasome, which is critical in diseases progression. However, the actual mechanisms and clinical treatment related to exosomes and NLRP3 are still not fully understood. Herein, we presented an up-to-date review of exosomes and NLRP3 in diseases, outlining what is known about the role of exosomes in the activation of NLRP3 inflammasome and also highlighting areas of this topic that warrant further study.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Meng-Ko Tsai ◽  
Chao-Hung Lai ◽  
Chris Tsai ◽  
Guan-Liang Chen

Community-acquired pneumonia caused by Mycoplasma pneumoniae or Chlamydia pneumoniae is usually mild. Mycoplasma pneumoniae-related and C. pneumoniae-related acute respiratory distress syndromes (ARDSs) are rare. Moreover, to our knowledge, there are no published reports on ARDS caused by M. pneumoniae and C. pneumoniae coinfection. Here, we report a case of an immunocompetent young woman who was co-infected with M. pneumoniae and C. pneumoniae and was started on treatment with piperacillin and clarithromycin. Two days later, she developed ARDS. She recovered rapidly following a change of antibiotic treatment to levofloxacin and was discharged on day 12. We conducted exome sequencing followed by alternative filtering to search for candidate ARDS-related genes. We identified an intronic variant of unknown significance within leucine-rich repeat-containing 16A (LRRC16A), a gene previously identified as a significant locus for platelet count with a possible role in ARDS. This is a rare case of ARDS in a young adult caused by M. pneumoniae and C. pneumoniae coinfection. This case suggests that ARDS in young adults may be correlated with variants in LRRC16A. This requires confirmation by further case reports.


2021 ◽  
Author(s):  
Carmen Escudero-Martinez ◽  
Max Coulter ◽  
Rodrigo Alegria Terrazas ◽  
Alexandre Foito ◽  
Rumana Kapadia ◽  
...  

A prerequisite to exploiting soil microbes for sustainable crop production is the identification of the plant genes shaping microbiota composition in the rhizosphere, the interface between roots and soil. Here we used metagenomics information as an external quantitative phenotype to map the host genetic determinants of the rhizosphere microbiota in wild and domesticated genotypes of barley, the fourth most cultivated cereal globally. We identified a small number of loci with a major effect on the composition of rhizosphere communities. One of those, designated the QRMC-3HS locus, emerged as a major determinant of microbiota composition. We then subjected soil-grown sibling lines harbouring contrasting alleles at QRMC-3HS and hosting contrasting microbiotas to comparative root RNA-seq profiling. This allowed us to identify three primary candidate genes, including a Nucleotide-Binding-Leucine-Rich-Repeat (NLR) gene in a region of structural variation of the barley genome. Our results provide novel insights into the footprint of crop improvement on the plants capacity of shaping rhizosphere microbes.


2021 ◽  
Author(s):  
Philipp E Bayer ◽  
Haifei Hu ◽  
Jakob Petereit ◽  
Rajeev K Varshney ◽  
Babu Valliyodan ◽  
...  

The availability of increasing quantities of crop pangenome data permits the detailed association of gene content with agronomic traits. Here, we investigate disease resistance gene content of diverse soybean cultivars and report a significant negative correlation between the number of NLR resistance (R) genes and yield. We find no association between R-genes with seed weight, oil or protein content, and we find no correlation between yield and the number of RLK, RLP genes, or the total number of genes. These results suggest that recent yield improvement in soybean may be partially associated with the selective loss of NLR genes. Three quarters of soybean NLR genes do not show presence/absence variation, limiting the ability to select for their absence, and so the deletion or disabling of select NLR genes may support future yield improvement.


Sign in / Sign up

Export Citation Format

Share Document