scholarly journals Regulation of Cell Number in Formation of the Dorsal Root Ganglion Revealed by Transplantation of Quail Neural Crest Cells into Chick Embryos. (dorsal root ganglia/cell number/chick-quail chimera/neural crest/regulation)

1992 ◽  
Vol 34 (5) ◽  
pp. 553-560 ◽  
Author(s):  
Ken Asamoto ◽  
Yoshiaki Nojyo ◽  
Hirohiko Aoyama
Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 85-93 ◽  
Author(s):  
C. Kalcheim ◽  
M.A. Teillet

We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329–347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continuous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4–9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2811-2821 ◽  
Author(s):  
Y. Wakamatsu ◽  
T.M. Maynard ◽  
J.A. Weston

Avian trunk neural crest cells give rise to a variety of cell types including neurons and satellite glial cells in peripheral ganglia. It is widely assumed that crest cell fate is regulated by environmental cues from surrounding embryonic tissues. However, it is not clear how such environmental cues could cause both neurons and glial cells to differentiate from crest-derived precursors in the same ganglionic locations. To elucidate this issue, we have examined expression and function of components of the NOTCH signaling pathway in early crest cells and in avian dorsal root ganglia. We have found that Delta1, which encodes a NOTCH ligand, is expressed in early crest-derived neuronal cells, and that NOTCH1 activation in crest cells prevents neuronal differentiation and permits glial differentiation in vitro. We also found that NUMB, a NOTCH antagonist, is asymmetrically segregated when some undifferentiated crest-derived cells in nascent dorsal root ganglia undergo mitosis. We conclude that neuron-glia fate determination of crest cells is regulated, at least in part, by NOTCH-mediated lateral inhibition among crest-derived cells, and by asymmetric cell division.


2008 ◽  
Vol 125 (11-12) ◽  
pp. 1033-1047 ◽  
Author(s):  
Judy Bononi ◽  
Angela Cole ◽  
Paul Tewson ◽  
Andrew Schumacher ◽  
Roger Bradley

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 877-886 ◽  
Author(s):  
K.B. Artinger ◽  
M. Bronner-Fraser

Grafting experiments previously have established that the notochord affects dorsoventral polarity of the neural tube by inducing the formation of ventral structures such as motor neurons and the floor plate. Here, we examine if the notochord inhibits formation of dorsal structures by grafting a notochord within or adjacent to the dorsal neural tube prior to or shortly after tube closure. In all cases, neural crest cells emigrated from the neural tube adjacent to the ectopic notochord. When analyzed at stages after ganglion formation, the dorsal root ganglia appeared reduced in size and shifted in position in embryos receiving grafts. Another dorsal cell type, commissural neurons, identified by CRABP and neurofilament immunoreactivity, differentiated in the vicinity of the ectopic notochord. Numerous neuronal cell bodies and axonal processes were observed within the induced, but not endogenous, floor plate 1 to 2 days after implantation but appeared to be cleared with time. These results suggest that dorsally implanted notochords cannot prevent the formation of neural crest cells or commissural neurons, but can alter the size and position of neural crest-derived dorsal root ganglia.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 501-507 ◽  
Author(s):  
D.W. Raible ◽  
J.S. Eisen

Zebrafish trunk neural crest cells that migrate at different times have different fates: early-migrating crest cells produce dorsal root ganglion neurons as well as glia and pigment cells, while late-migrating crest cells produce only non-neuronal derivatives. When presumptive early-migrating crest cells were individually transplanted into hosts such that they migrated late, they retained the ability to generate neurons. In contrast, late-migrating crest cells transplanted under the same conditions never generated neurons. These results suggest that, prior to migration, neural crest cells have intrinsic biases in the types of derivatives they will produce. Transplantation of presumptive early-migrating crest cells does not result in production of dorsal root ganglion neurons under all conditions suggesting that these cells require appropriate environmental factors to express these intrinsic biases. When early-migrating crest cells are ablated, late-migrating crest cells gain the ability to produce neurons, even when they migrate on their normal schedule. Interactions among neural crest cells may thus regulate the types of derivatives neural crest cells produce, by establishing or maintaining intrinsic differences between individual cells.


2008 ◽  
Vol 295 (5) ◽  
pp. L858-L865 ◽  
Author(s):  
Kevin Kwong ◽  
Marian Kollarik ◽  
Christina Nassenstein ◽  
Fei Ru ◽  
Bradley J. Undem

The lungs and esophagus are innervated by sensory neurons with somata in the nodose, jugular, and dorsal root ganglion. These sensory ganglia are derived from embryonic placode (nodose) and neural crest tissues (jugular and dorsal root ganglia; DRG). We addressed the hypothesis that the neuron's embryonic origin (e.g., placode vs. neural crest) plays a greater role in determining particular aspects of its phenotype than the environment in which it innervates (e.g., lungs vs. esophagus). This hypothesis was tested using a combination of extracellular and patch-clamp electrophysiology and single-cell RT-PCR from guinea pig neurons. Nodose, but not jugular C-fibers innervating the lungs and esophagus, responded to α,β-methylene ATP with action potential discharge that was sensitive to the P2X3 (P2X2/3) selective receptor antagonist A-317491. The somata of lung- and esophagus-specific sensory fibers were identified using retrograde tracing with a fluorescent dye. Esophageal- and lung-traced neurons from placodal tissue (nodose neurons) responded similarly to α,β-methylene ATP (30 μM) with a large sustained inward current, whereas in neurons derived from neural crest tissue (jugular and DRG neurons), the same dose of α,β-methylene ATP resulted in only a transient rapidly inactivating current or no detectable current. It has been shown previously that only activation of P2X2/3 heteromeric receptors produce sustained currents, whereas homomeric P2X3 receptor activation produces a rapidly inactivating current. Consistent with this, single-cell RT-PCR analysis revealed that the nodose ganglion neurons innervating the lungs and esophagus expressed mRNA for P2X2 and P2X3 subunits, whereas the vast majority of jugular and dorsal root ganglia innervating these tissues expressed only P2X3 mRNA with little to no P2X2 mRNA expression. We conclude that the responsiveness of C-fibers innervating the lungs and esophagus to ATP and other purinergic agonists is determined more by their embryonic origin than by the environment of the tissue they ultimately innervate.


Sign in / Sign up

Export Citation Format

Share Document