Consequences of somite manipulation on the pattern of dorsal root ganglion development

Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 85-93 ◽  
Author(s):  
C. Kalcheim ◽  
M.A. Teillet

We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329–347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continuous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4–9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 877-886 ◽  
Author(s):  
K.B. Artinger ◽  
M. Bronner-Fraser

Grafting experiments previously have established that the notochord affects dorsoventral polarity of the neural tube by inducing the formation of ventral structures such as motor neurons and the floor plate. Here, we examine if the notochord inhibits formation of dorsal structures by grafting a notochord within or adjacent to the dorsal neural tube prior to or shortly after tube closure. In all cases, neural crest cells emigrated from the neural tube adjacent to the ectopic notochord. When analyzed at stages after ganglion formation, the dorsal root ganglia appeared reduced in size and shifted in position in embryos receiving grafts. Another dorsal cell type, commissural neurons, identified by CRABP and neurofilament immunoreactivity, differentiated in the vicinity of the ectopic notochord. Numerous neuronal cell bodies and axonal processes were observed within the induced, but not endogenous, floor plate 1 to 2 days after implantation but appeared to be cleared with time. These results suggest that dorsally implanted notochords cannot prevent the formation of neural crest cells or commissural neurons, but can alter the size and position of neural crest-derived dorsal root ganglia.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 505-514 ◽  
Author(s):  
S.J. Conway ◽  
D.J. Henderson ◽  
A.J. Copp

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This ‘cardiac’ neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in situ hybridisation, that Pax3 expression can serve as a marker of cardiac neural crest cells in the mouse embryo. Cells of this lineage were traced from the occipital neural tube, via branchial arches 3, 4 and 6, into the aortic sac and aorto-pulmonary outflow tract. Confirmation that these Pax3-positive cells are indeed cardiac neural crest is provided by experiments in which hearts were deprived of a source of colonising neural crest, by organ culture in vitro, with consequent lack of up-regulation of Pax3. Occipital neural crest cell outgrowths in vitro were also shown to express Pax3. Mutation of Pax3, as occurs in the splotch (Sp2H) mouse, results in development of conotruncal heart defects including persistent truncus arteriosus. Homozygotes also exhibit defects of the aortic arches, thymus, thyroid and parathyroids. Pax3-positive neural crest cells were found to emigrate from the occipital neural tube of Sp2H/Sp2H embryos in a relatively normal fashion, but there was a marked deficiency or absence of neural crest cells traversing branchial arches 3, 4 and 6, and entering the cardiac outflow tract. This decreased expression of Pax3 in Sp2H/Sp2H embryos was not due to down-regulation of Pax3 in neural crest cells, as use of independent neural crest markers, Hoxa-3, CrabpI, Prx1, Prx2 and c-met also revealed a deficiency of migrating cardiac neural crest cells in homozygous embryos. This work demonstrates the essential role of the cardiac neural crest in formation of the heart and great vessels in the mouse and, furthermore, shows that Pax3 function is required for the cardiac neural crest to complete its migration to the developing heart.


Development ◽  
1990 ◽  
Vol 108 (4) ◽  
pp. 543-558 ◽  
Author(s):  
G. Couly ◽  
N.M. Le Douarin

Areas of the superficial cephalic ectoderm, including or excluding the neural fold at the same level, were surgically removed from 3-somite chick embryos and replaced by their counterparts excised from a quail embryo at the same developmental stage. Strips of ectoderm corresponding to the presumptive branchial arches were delineated, thus defining anteroposterior ‘segments’ (designated here as ‘ectomeres’) that coincided with the spatial distribution of neural crest cells arising from the adjacent levels of the neural fold. This discrete ectodermal metamerisation parallels the segmentation of the hindbrain into rhombomeres. It seems, therefore, that not only is the neural crest patterned according to its rhombomeric origin but that the superficial ectoderm covering the branchial arches may be part of a larger developmental unit that includes the entire neurectoderm, i.e., the neural tube and the neural crest.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 207-216 ◽  
Author(s):  
C.D. Stern ◽  
K.B. Artinger ◽  
M. Bronner-Fraser

A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 857-866 ◽  
Author(s):  
G.N. Serbedzija ◽  
S. Burgan ◽  
S.E. Fraser ◽  
M. Bronner-Fraser

We have used the vital dye, DiI, to analyze the contribution of sacral neural crest cells to the enteric nervous system in chick and mouse embryos. In order to label premigratory sacral neural crest cells selectively, DiI was injected into the lumen of the neural tube at the level of the hindlimb. In chick embryos, DiI injections made prior to stage 19 resulted in labelled cells in the gut, which had emerged from the neural tube adjacent to somites 29–37. In mouse embryos, neural crest cells emigrated from the sacral neural tube between E9 and E9.5. In both chick and mouse embryos, DiI-labelled cells were observed in the rostral half of the somitic sclerotome, around the dorsal aorta, in the mesentery surrounding the gut, as well as within the epithelium of the gut. Mouse embryos, however, contained consistently fewer labelled cells than chick embryos. DiI-labelled cells first were observed in the rostral and dorsal portion of the gut. Paralleling the maturation of the embryo, there was a rostral-to-caudal sequence in which neural crest cells populated the gut at the sacral level. In addition, neural crest cells appeared within the gut in a dorsal-to-ventral sequence, suggesting that the cells entered the gut dorsally and moved progressively ventrally. The present results resolve a long-standing discrepancy in the literature by demonstrating that sacral neural crest cells in both the chick and mouse contribute to the enteric nervous system in the postumbilical gut.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 913-920 ◽  
Author(s):  
S.E. Fraser ◽  
M. Bronner-Fraser

Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 15-28 ◽  
Author(s):  
H. Aoyama ◽  
K. Asamoto

Somites are mesodermal structures which appear transiently in vertebrates in the course of their development. Cells situated ventromedially in a somite differentiate into the sclerotome, which gives rise to cartilage, while the other part of the somite differentiates into dermomyotome which gives rise to muscle and dermis. The sclerotome is further divided into a rostral half, where neural crest cells settle and motor nerves grow, and a caudal half. To find out when these axes are determined and how they rule later development, especially the morphogenesis of cartilage derived from the somites, we transplanted the newly formed three caudal somites of 2.5-day-old quail embryos into chick embryos of about the same age, with reversal of some axes. The results were summarized as follows. (1) When transplantation reversed only the dorsoventral axis, one day after the operation the two caudal somites gave rise to normal dermomyotomes and sclerotomes, while the most rostral somite gave rise to a sclerotome abnormally situated just beneath ectoderm. These results suggest that the dorsoventral axis was not determined when the somites were formed, but began to be determined about three hours after their formation. (2) When the transplantation reversed only the rostrocaudal axis, two days after the operation the rudiments of dorsal root ganglia were formed at the caudal (originally rostral) halves of the transplanted sclerotomes. The rostrocaudal axis of the somites had therefore been determined when the somites were formed. (3) When the transplantation reversed both the dorsoventral and the rostrocaudal axes, two days after the operation, sclerotomes derived from the prospective dermomyotomal region of the somites were shown to keep their original rostrocaudal axis, judging from the position of the rudiments of ganglia. Combined with results 1 and 2, this suggested that the fate of the sclerotomal cells along the rostrocaudal axis was determined previously and independently of the determination of somite cell differentiation into dermomyotome and sclerotome. (4) In the 9.5-day-old chimeric embryos with rostrocaudally reversed somites, the morphology of vertebrae and ribs derived from the explanted somites were reversed along the rostrocaudal axis. The morphology of cartilage derived from the somites was shown to be determined intrinsically in the somites by the time these were formed from the segmental plate. The rostrocaudal pattern of the vertebral column is therefore controlled by factors intrinsic to the somitic mesoderm, and not by interactions between this mesoderm and the notochord and/or neural tube, arising after segmentation.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2811-2821 ◽  
Author(s):  
Y. Wakamatsu ◽  
T.M. Maynard ◽  
J.A. Weston

Avian trunk neural crest cells give rise to a variety of cell types including neurons and satellite glial cells in peripheral ganglia. It is widely assumed that crest cell fate is regulated by environmental cues from surrounding embryonic tissues. However, it is not clear how such environmental cues could cause both neurons and glial cells to differentiate from crest-derived precursors in the same ganglionic locations. To elucidate this issue, we have examined expression and function of components of the NOTCH signaling pathway in early crest cells and in avian dorsal root ganglia. We have found that Delta1, which encodes a NOTCH ligand, is expressed in early crest-derived neuronal cells, and that NOTCH1 activation in crest cells prevents neuronal differentiation and permits glial differentiation in vitro. We also found that NUMB, a NOTCH antagonist, is asymmetrically segregated when some undifferentiated crest-derived cells in nascent dorsal root ganglia undergo mitosis. We conclude that neuron-glia fate determination of crest cells is regulated, at least in part, by NOTCH-mediated lateral inhibition among crest-derived cells, and by asymmetric cell division.


Sign in / Sign up

Export Citation Format

Share Document