Ethiopia and Djibouti – Geothermal Wells

Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


2011 ◽  
Author(s):  
Flavio Poletto ◽  
Piero Corubolo ◽  
Biancamaria Farina ◽  
Andrea Schleifer ◽  
Joseph Pollard ◽  
...  

2021 ◽  
Vol 73 (07) ◽  
pp. 50-50
Author(s):  
Robello Samuel

How we think about the future of the pipe industry must evolve. How must tubular design and manufacturing change as we transition to clean energy? Geothermal energy is an area that needs attention and, further, needs very specific attention on tubulars. Tubulars are an important component in the construction of geothermal wells, and we must align our requirements for geothermal energy. Some of the main challenges encountered in geothermal wells are corrosion and scaling. Moreover, temperature becomes a major consideration for tubulars, even more so with the temperature excursion during geothermal production. Perhaps the critical aspect in the design of the geothermal wells involves casing selection and design. Beyond manufacturing casing pipes to withstand these problems, considering the manufacturing of other components, such as connections, float collars, and float shoes, also is essential. Thermal expansion and thermal excursion of casings are well-integrity concerns; thus, casing design is important for long-term sustainability of geothermal wells. Apart from thermal simulations, guidelines and software are needed to undergird the designs to withstand not only temperature excursions but also thermomechanical and thermochemical loadings. Engineered nonmetallic casings also provide an alternative solution because they provide the desired strength and corrosion resistance in addition to meeting the goals of sustainability. Undoubtedly, the future of the tubular industry is going to be revitalized. The question now is how we can retrofit existing abandoned wells for this purpose. Recommended additional reading at OnePetro: www.onepetro.org. SPE 199570 - Special Considerations for Well-Tubular Design at Elevated Temperatures by Gang Tao, C-FER Technologies, et al.


2009 ◽  
Author(s):  
Julio Rodolfo Gomez ◽  
Leandro Forero Pachon ◽  
Luz Barrios ◽  
Enrique Porras

1989 ◽  
Vol 4 (03) ◽  
pp. 454-458
Author(s):  
J. Davarzani ◽  
M.L. Sloan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document