Symbiotic nitrogen fixation in a tropical rainforest: 15 N natural abundance measurements supported by experimental isotopic enrichment

2006 ◽  
Vol 173 (1) ◽  
pp. 154-167 ◽  
Author(s):  
Thijs L. Pons ◽  
Kristel Perreijn ◽  
Chris Van Kessel ◽  
Marinus J. A. Werger
2005 ◽  
Vol 275 (1-2) ◽  
pp. 261-269 ◽  
Author(s):  
El Amin Yousif Raddad ◽  
Ahmed Ali Salih ◽  
Mohamed Ahmed El Fadl ◽  
Vesa Kaarakka ◽  
Olavi Luukkanen

1988 ◽  
Vol 66 (7) ◽  
pp. 1241-1247 ◽  
Author(s):  
A. M. Domenach ◽  
F. Kurdali ◽  
C. Danière ◽  
R. Bardin

To use the 15N natural abundance method to evaluate the symbiotic nitrogen fixation by actinorhizal trees, it is necessary to determine the isotopic identity of assimilated nitrogen from two sources: the soil and the air. This study reports an isotopic value of fixed nitrogen by two alder species (Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. growing on nitrogen-free medium in greenhouse experiments. The δ15N value of the aerial parts was −2. This value was stable with time and did not depend on the Frankia strains used. This value could be used to estimate the nitrogen fixation in the natural ecosystem. Other parameters such as the mobilization of nitrogen reserves and the choice of the reference plant must be investigated to apply this method. The nodules of these two alder species were enriched in 15N relative to the rest of the plant but there was no relationship between symbiotic effectiveness of Frankia strains and 15N enrichment of nodules. On the other hand, for naturally growing trees, an enrichment in 15N was found primarily in the vesicles of nodules that are the sites of nitrogen fixation.


2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sanjiao Wang ◽  
Tiantian Lu ◽  
Qiang Xue ◽  
Ke Xu ◽  
Guojun Cheng

Sign in / Sign up

Export Citation Format

Share Document