Can publication bias affect ecological research? A case study on soil respiration under elevated CO2

2010 ◽  
Vol 190 (3) ◽  
pp. 517-521 ◽  
Author(s):  
Wouter I. J. Dieleman ◽  
Ivan A. Janssens
2021 ◽  
Vol 304-305 ◽  
pp. 108426
Author(s):  
Wenhao Sun ◽  
Xining Zhao ◽  
Xiaodong Gao ◽  
Weiyu Shi ◽  
Qiang Ling ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 315-328 ◽  
Author(s):  
Q. Deng ◽  
G. Zhou ◽  
J. Liu ◽  
S. Liu ◽  
H. Duan ◽  
...  

Abstract. Global climate change in the real world always exhibits simultaneous changes in multiple factors. Prediction of ecosystem responses to multi-factor global changes in a future world strongly relies on our understanding of their interactions. However, it is still unclear how nitrogen (N) deposition and elevated atmospheric carbon dioxide concentration [CO2] would interactively influence forest floor soil respiration in subtropical China. We assessed the main and interactive effects of elevated [CO2] and N addition on soil respiration by growing tree seedlings in ten large open-top chambers under CO2 (ambient CO2 and 700 μmol mol−1) and nitrogen (ambient and 100 kg N ha−1 yr−1) treatments. Soil respiration, soil temperature and soil moisture were measured for 30 months, as well as above-ground biomass, root biomass and soil organic matter (SOM). Results showed that soil respiration displayed strong seasonal patterns with higher values observed in the wet season (April–September) and lower values in the dry season (October–March) in all treatments. Significant exponential relationships between soil respiration rates and soil temperatures, as well as significant linear relationships between soil respiration rates and soil moistures (below 15%) were found. Both CO2 and N treatments significantly affected soil respiration, and there was significant interaction between elevated [CO2] and N addition (p<0.001, p=0.003, and p=0.006, respectively). We also observed that the stimulatory effect of individual elevated [CO2] (about 29% increased) was maintained throughout the experimental period. The positive effect of N addition was found only in 2006 (8.17% increased), and then had been weakened over time. Their combined effect on soil respiration (about 50% increased) was greater than the impact of either one alone. Mean value of annual soil respiration was 5.32 ± 0.08, 4.54 ± 0.10, 3.56 ± 0.03 and 3.53 ± 0.03 kg CO2 m−2 yr−1 in the chambers exposed to elevated [CO2] and high N deposition (CN), elevated [CO2] and ambient N deposition (CC), ambient [CO2] and high N deposition (NN), and ambient [CO2] and ambient N deposition (CK as a control), respectively. Greater above-ground biomass and root biomass was obtained in the CN, CC and NN treatments, and higher soil organic matter was observed only in the CN treatment. In conclusion, the combined effect of elevated [CO2] and N addition on soil respiration was apparent interaction. They should be evaluated in combination in subtropical forest ecosystems in China where the atmospheric CO2 and N deposition have been increasing simultaneously and remarkably.


Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 198 ◽  
Author(s):  
Shutao Chen ◽  
Yao Huang

Studies on the CO2 and N2O emission patterns of agricultural soils under different ploughing practices may provide an insight into the potential and magnitude of CO2 and N2O mitigation in highly managed farmland soils. In this study, field measurements of soil respiration and N2O flux with different ploughing depths were performed in the 2003–04 wheat (Triticum aestivum L.), 2004 maize (Zea mays L.), and 2004–05 wheat seasons. Soil temperature and moisture were simultaneously measured. Results showed that, in each cropping season, the seasonal variation in soil respiration developed with a similar pattern for different treatments, which was primarily regulated by soil temperature. This work demonstrates that ploughing depth can influence long-term loss of carbon from soil, but this was contingent on preceding cropping types. Given the same preceding cropping practice, no significant difference in N2O emission was found among different ploughing depths in each cropping season.


FACETS ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 534-537
Author(s):  
Kyle A. Schang ◽  
Andrew J. Trant ◽  
Sara A. Bohnert ◽  
Alana M. Closs ◽  
Megan Humchitt ◽  
...  

The relationship between Indigenous peoples and the functioning of terrestrial ecosystems has received increased attention in recent years. As a result, it is becoming more critical for researchers focusing on terrestrial ecosystems to work with Indigenous groups to gain a better understanding of how past and current stewardship of these lands may influence results. As a case study to explore these ideas, we systematically reviewed articles from 2008 to 2018 where research was conducted in North America, South America, and Oceania. Of the 159 articles included, 11 included acknowledgement of Indigenous stewardship, acknowledged the Indigenous Territories or lands, or named the Indigenous group on whose Territory the research was conducted. Within the scope of this case study, our results demonstrate an overall lack of Indigenous acknowledgement or consideration within the scope of our review. Given the recent advancements in our understanding of how Indigenous groups have shaped their lands, we implore researchers to consider collaboration among local Indigenous groups as to better cultivate relationships and foster a greater understanding of their ecosystems.


PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15134 ◽  
Author(s):  
Yumei Zhou ◽  
Mai-He Li ◽  
Xu-Bing Cheng ◽  
Cun-Guo Wang ◽  
A-Nan Fan ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260
Author(s):  
Bo Yao ◽  
Qiwu Hu ◽  
Guihua Zhang ◽  
Yafeng Yi ◽  
Meijuan Xiao ◽  
...  

Forests near rapidly industrialized and urbanized regions are often exposed to elevated CO2, increased N deposition, and heavy metal pollution. To date, the effects of elevated CO2 and/or increased N deposition on soil respiration (Rs) under heavy metal contamination are unclear. In this study, we firstly investigated Rs in Cd-contaminated model forests with CO2 enrichment and N addition in subtropical China. Results showed that Rs in all treatments exhibited similar clear seasonal patterns, with soil temperature being a dominant control. Cadmium addition significantly decreased cumulative soil CO2 efflux by 19% compared to the control. The inhibition of Rs caused by Cd addition was increased by N addition (decreased by 34%) was partially offset by elevated CO2 (decreased by 15%), and was not significantly altered by the combined N addition and rising CO2. Soil pH, microbial biomass carbon, carbon-degrading hydrolytic enzymes, and fine root biomass were also significantly altered by the treatments. A structural equation model revealed that the responses of Rs to Cd stress, elevated CO2, and N addition were mainly mediated by soil carbon-degrading hydrolytic enzymes and fine root biomass. Overall, our findings indicate that N deposition may exacerbate the negative effect of Cd on Rs in Cd-contaminated forests and benefit soil carbon sequestration in the future at increasing atmospheric CO2 levels.


Sign in / Sign up

Export Citation Format

Share Document