fine root biomass
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 73)

H-INDEX

39
(FIVE YEARS 5)

Author(s):  
Cinthia Aparecida Silva ◽  
Vinícius Londe ◽  
André Mouro D’Angioli ◽  
Marcos A. S. Scaranello ◽  
Bruno Bordron ◽  
...  

Rhizosphere ◽  
2022 ◽  
pp. 100474
Author(s):  
Sanchez-Silva Sarai ◽  
Bernardus HJ. De Jong ◽  
Huerta-Lwanga Esperanza ◽  
Mendoza-Vega Jorge ◽  
Morales-Ruiz Danilo ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1806
Author(s):  
Omoyemeh Jennifer Ile ◽  
Maricar Aguilos ◽  
Suna Morkoc ◽  
Joshua Heitman ◽  
John S. King

Short rotation woody crops (SRWCs) provide sustainable, renewable biomass energy and offer potential ecosystem services, including increased carbon storage, reduced greenhouse gas emissions, and improved soil health. Establishing SRWCs on degraded lands has potential to enhance soil properties through root and organic matter turnover. A better understanding of SRWC planting density and its associated root turnover impacts on soil–air–water relations can improve management. In this study, we investigate the effects of planting density for a low-input American sycamore SRWC (no fertilization/irrigation) on soil physical properties for a degraded agricultural site in the North Carolina piedmont. The objectives were (1) to estimate the distributions of coarse and fine root biomass in three planting densities (10,000, 5000, and 2500 trees per hectare (tph)) and (2) to assess the effects of planting density on soil hydraulic properties and pore size distribution. Our results show that planting at 10,000 tph produced significantly higher amounts of fine root biomass than at lower planting densities (p < 0.01). In the 25,000 tph plots, there was significantly higher amounts of coarse root biomass than for higher planting densities (p < 0.05). The 10,000 tph plots had lower plant available water capacity but larger drainable porosity and saturated hydraulic conductivity compared with lower planting densities (<0.05). The 10,000 tph plots total porosity was more dominated by larger pore size fractions compared with the 5000 and 2500 tph. Generally, our findings show similar patterns of soil hydraulic properties and pore size distributions for lower planting densities. The results from 10,000 tph indicate a higher air-filled pore space at field capacity and more rapid drainage compared with lower planting densities. Both characteristics observed in the 10,000 tph are favorable for aeration and oxygen uptake, which are especially important at wet sites. Overall, the results suggest that improved soil health can be achieved from the establishment of American sycamore SRCs on marginal lands, thereby providing a green pathway to achieving environmental sustainability with woody renewable energy.


2021 ◽  
Author(s):  
Yue Pang ◽  
Jing Tian ◽  
Dexiang Wang

Abstract Background: Fine roots make critical contributions to carbon stocks and terrestrial productivity, and multidiameter-class fine roots exhibit functional heterogeneity. However, the dynamic characteristics of multidiameter-class fine roots at different soil depths following thinning disturbances are poorly understood. We investigated the biomass, production, mortality and turnover rate of < 0.5 mm, 0.5–1 mm and 1–2 mm fine roots at 0-20 cm, 20-40 cm and 40-60 cm soil depths under five thinning intensities (0%, 15%, 30%, 45%, and 60%) in a secondary forest in the Qinling Mountains. Results: The biomass, production and turnover rate of < 0.5 mm fine roots fluctuated with increasing thinning intensity, while 0.5-1 mm and 1-2 mm fine root biomass significantly decreased. Thinning measures had no effects on fine root necromass (except for T4) or mortality. The fine root dynamic characteristics in deeper soils were more sensitive to thinning measures. Principal component analysis results show that increased < 0.5 mm fine root biomass and production resulted from increased shrub and herb diversity and biomass and decreased soil nutrient availability, stand volume and litter biomass, whereas 0.5-1 mm and 1-2 mm fine root biomass showed the opposite trends and change mechanisms. Conclusions: Our results provide evidence of the positive effect of thinning on very fine root (< 0.5 mm) biomass and production and the negative effect on thicker fine roots (0.5-1, 1-2 mm) or all fine root (< 2 mm) biomass. From the perspective of fine root biomass and productivity, T2 (30%) is recommended for use in secondary forests of the Qinling Mountains. Moreover, our results suggest that thinning practices have varied effects on the dynamic characteristics of multidiameter-class fine roots.


2021 ◽  
Vol 130 ◽  
pp. 108031
Author(s):  
Wen Li ◽  
Yifei Shi ◽  
Dandan Zhu ◽  
Wenqian Wang ◽  
Haowei Liu ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Nelda Dezzeo ◽  
Julio Grandez-Rios ◽  
Christopher Martius ◽  
Kristell Hergoualc’h

Abstract Background Amazon palm swamp peatlands are major carbon (C) sinks and reservoirs. In Peru, this ecosystem is widely threatened owing to the recurrent practice of cutting Mauritia flexuosa palms for fruit harvesting. Such degradation could significantly damage peat deposits by altering C fluxes through fine root productivity, mortality, and decomposition rates which contribute to and regulate peat accumulation. Along a same peat formation, we studied an undegraded site (Intact), a moderately degraded site (mDeg) and a heavily degraded site (hDeg) over 11 months. Fine root C stocks and fluxes were monthly sampled by sequential coring. Concomitantly, fine root decomposition was investigated using litter bags. In the experimental design, fine root stocks and dynamics were assessed separately according to vegetation type (M. flexuosa palm and other tree species) and M. flexuosa age class. Furthermore, results obtained from individual palms and trees were site-scaled by using forest composition and structure. Results At the scale of individuals, fine root C biomass in M. flexuosa adults was higher at the mDeg site than at the Intact and hDeg sites, while in trees it was lowest at the hDeg site. Site-scale fine root biomass (Mg C ha−1) was higher at the mDeg site (0.58 ± 0.05) than at the Intact (0.48 ± 0.05) and hDeg sites (0.32 ± 0.03). Site-scale annual fine root mortality rate was not significantly different between sites (3.4 ± 1.3, 2.0 ± 0.8, 1.5 ± 0.7 Mg C ha−1 yr−1 at the Intact, mDeg, and hDeg sites) while productivity (same unit) was lower at the hDeg site (1.5 ± 0.8) than at the Intact site (3.7 ± 1.2), the mDeg site being intermediate (2.3 ± 0.9). Decomposition was slow with 63.5−74.4% of mass remaining after 300 days and it was similar among sites and vegetation types. Conclusions The significant lower fine root C stock and annual productivity rate at the hDeg site than at the Intact site suggests a potential for strong degradation to disrupt peat accretion. These results stress the need for a sustainable management of these forests to maintain their C sink function.


Sign in / Sign up

Export Citation Format

Share Document