The Separation, from Mammalian Brain, of Separate Fractions of Recycling and Reserve Cholinergic Synaptic Vesicles

1987 ◽  
Vol 48 (5) ◽  
pp. 1656-1656
Author(s):  
V. P. Whittaker
2020 ◽  
Author(s):  
Lynne Chantranupong ◽  
Jessica L Saulnier ◽  
Wengang Wang ◽  
Drew R Jones ◽  
Michael E Pacold ◽  
...  

2021 ◽  
Author(s):  
Neha Upmanyu ◽  
Jialin Jin ◽  
Marcelo Ganzella ◽  
Leon Boesche ◽  
Viveka Nand Malviya ◽  
...  

Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain neurons in mammalian brain release multiple transmitters, the prevalence, physiology of such pluralism and if the release occurs from same or distinct vesicle pools is not clear. Using quantitative imaging and biochemical approaches, we show that only a small population of neuronal SVs contain different VTs to accomplish corelease. Surprisingly, a highly diverse SV population (27 types) exist that express dual transporters suggesting corelease of diverse combinations of dual neurotransmitters, which includes the vesicle type that contains glutamate and zinc accounting for ∼34% of all SVs. Importantly, we demonstrate that transporter colocalization influences vesicular glutamate uptake leading to enhanced synaptic quantal size. Thus, localization of diverse transporters on single vesicles is bona-fide and the mechanism may underlie regulation of transmitter content, type and release in space and time.


Author(s):  
Vincenzo Di Carlo

High-resolution electron microscopy of ultra-thin sections of fixed and plastic-embedded tissue shows that myelin consists essentially of an orderly aggregate of osmiophilic granules and osmiophobic globules. Frequently, granules and globules can be seen organized in hexagonal formations (diameter of about 90-120 A), which have an osmiophilic granule (diameter of about 30 A) in the center and six osmiophobic globules (diameter of about 40-45 A) around it. These formations are morphologically very similar to the “polyhedric-globular” (P-G) units (approx. 40-50 A high hexagonal prisms) which were described in the membrane of synaptic vesicles and mitochondria and in the plasma membranes of frog brain cortex as well as in the ribosomes of neurons of mammalian brain cortex. The P-G units were postulated to be an important, if not the exclusive, constituent of many biological membranes, which would be essentially a mosaic of such hexagonal prisms. Since ribosomes, which are believed to contain no lipid, also show the presence of P-G units in their structure, one wonders whether these units might possibly reflect mainly the presence of protein.


1999 ◽  
Vol 10 (7) ◽  
pp. 2343-2360 ◽  
Author(s):  
Michael L. Nonet ◽  
Andrea M. Holgado ◽  
Faraha Brewer ◽  
Craig J. Serpe ◽  
Betty A. Norbeck ◽  
...  

The unc-11 gene of Caenorhabditis elegans encodes multiple isoforms of a protein homologous to the mammalian brain-specific clathrin-adaptor protein AP180. The UNC-11 protein is expressed at high levels in the nervous system and at lower levels in other tissues. In neurons, UNC-11 is enriched at presynaptic terminals but is also present in cell bodies. unc-11mutants are defective in two aspects of synaptic vesicle biogenesis. First, the SNARE protein synaptobrevin is mislocalized, no longer being exclusively localized to synaptic vesicles. The reduction of synaptobrevin at synaptic vesicles is the probable cause of the reduced neurotransmitter release observed in these mutants. Second,unc-11 mutants accumulate large vesicles at synapses. We propose that the UNC-11 protein mediates two functions during synaptic vesicle biogenesis: it recruits synaptobrevin to synaptic vesicle membranes and it regulates the size of the budded vesicle during clathrin coat assembly.


2016 ◽  
Vol 113 (38) ◽  
pp. 10702-10707 ◽  
Author(s):  
Yoshihiro Egashira ◽  
Miki Takase ◽  
Shoji Watanabe ◽  
Junji Ishida ◽  
Akiyoshi Fukamizu ◽  
...  

GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H+ electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H+ exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission.


2020 ◽  
Vol 117 (52) ◽  
pp. 33586-33596
Author(s):  
Zacharie Taoufiq ◽  
Momchil Ninov ◽  
Alejandro Villar-Briones ◽  
Han-Ying Wang ◽  
Toshio Sasaki ◽  
...  

Current proteomic studies clarified canonical synaptic proteins that are common to many types of synapses. However, proteins of diversified functions in a subset of synapses are largely hidden because of their low abundance or structural similarities to abundant proteins. To overcome this limitation, we have developed an “ultra-definition” (UD) subcellular proteomic workflow. Using purified synaptic vesicle (SV) fraction from rat brain, we identified 1,466 proteins, three times more than reported previously. This refined proteome includes all canonical SV proteins, as well as numerous proteins of low abundance, many of which were hitherto undetected. Comparison of UD quantifications between SV and synaptosomal fractions has enabled us to distinguish SV-resident proteins from potential SV-visitor proteins. We found 134 SV residents, of which 86 are present in an average copy number per SV of less than one, including vesicular transporters of nonubiquitous neurotransmitters in the brain. We provide a fully annotated resource of all categorized SV-resident and potential SV-visitor proteins, which can be utilized to drive novel functional studies, as we characterized here Aak1 as a regulator of synaptic transmission. Moreover, proteins in the SV fraction are associated with more than 200 distinct brain diseases. Remarkably, a majority of these proteins was found in the low-abundance proteome range, highlighting its pathological significance. Our deep SV proteome will provide a fundamental resource for a variety of future investigations on the function of synapses in health and disease.


Sign in / Sign up

Export Citation Format

Share Document