scholarly journals EFFECT OF p-BROMOPHENACYL BROMIDE, AN INHIBITOR OF PHOSPHOLIPASE A2, ON ARACHIDONIC ACID RELEASE AND PROSTAGLANDIN SYNTHESIS BY THE GUINEA-PIG UTERUS in vitro

1977 ◽  
Vol 59 (1) ◽  
pp. 107-113 ◽  
Author(s):  
SHEILA MITCHELL ◽  
N.L. POYSER ◽  
N.H. WILSON
1989 ◽  
Vol 260 (2) ◽  
pp. 365-369 ◽  
Author(s):  
H Banfić ◽  
Z Gatalica

Phospholipid methylation and arachidonic acid release in renal-cortical slices was investigated in vitro after addition of plasma from uninephrectomized or sham-operated rats. Plasma from uninephrectomized rats (‘uni-plasma’) stimulated phospholipid methylation when obtained within the first 3 h after uninephrectomy. With different amounts of added plasma a graded response in phospholipid methylation was obtained. Addition of 50 nM-12-O-tetradecanoylphorbol 13-acetate for 10 min to intact slices also stimulated phospholipid methylation, whereas incubation of slices before addition of ‘uni-plasma’ with 100 microM-1-(5-isoquinolinylsulphonyl)-2-methylpiperazine prevented it, suggesting that protein kinase C stimulates phospholipid methylation in renal-cortical slices. Plasma from uninephrectomized rats also stimulates [3H]arachidonic acid release from phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) via activation of phospholipase A2. Two mechanisms of phospholipase A2 activation are proposed: first, in which it is activated by protein kinase C and releases 3H radioactivity from PtdCho, and second, in which phospholipase A2 is stimulated by Ca2+ ions and releases 3H radioactivity from PtdEtn.


1999 ◽  
Vol 145 (6) ◽  
pp. 1219-1232 ◽  
Author(s):  
Miguel A. Gijón ◽  
Diane M. Spencer ◽  
Alan L. Kaiser ◽  
Christina C. Leslie

Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.


Sign in / Sign up

Export Citation Format

Share Document