scholarly journals Differential sensitivities of the prostacyclin and nitric oxide biosynthetic pathways to cytosolic calcium in bovine aortic endothelial cells

1992 ◽  
Vol 107 (4) ◽  
pp. 1013-1019 ◽  
Author(s):  
Heydar Parsaee ◽  
Jean R. McEwan ◽  
Sunil Joseph ◽  
John MacDermot
FEBS Letters ◽  
1992 ◽  
Vol 299 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Anne Nègre-Salvayre ◽  
Guylène Fitoussi ◽  
Valérie Réaud ◽  
Marie-Thérèse Pieraggi ◽  
Jean-Claude Thiers ◽  
...  

1987 ◽  
Vol 253 (5) ◽  
pp. C744-C747 ◽  
Author(s):  
S. F. Steinberg ◽  
J. P. Bilezikian ◽  
Q. Al-Awqati

The new, highly fluorescent, calcium-sensitive dye, fura-2, can be loaded nondisruptively into intact cells by means of its permeant ester and used to measure the free calcium ion concentration in individual cells. For fura-2 to signal cytosolic calcium, it must be distributed homogeneously and exclusively throughout the cytoplasmic space. However, microscopic examination of bovine aortic endothelial cells loaded with fura-2 by exposure to its permeant ester reveals fluorescence associated with discrete intracellular structures rather than the homogeneous distribution expected for a cytosolic stain. Simultaneous labeling of bovine aortic endothelial cells with fura-2 and rhodamine 123 (a mitochondrial fluorescent vital stain) identifies these structures as mitochondria. Subcellular dye localizations are not observed when the cells are loaded with other putative cytosolic stains that gain access to the cytosol by means of a membrane permeant ester. Both carboxyfluorescein and indo-1 (another member of the family of second generation calcium indicators) stain the cytoplasm diffusely. It is suggested that fura-2 fluorescence accumulates in certain cells in association with mitochondria. It is important to assess the intracellular distribution of fura-2 when this indicator is used to measure the free cytosolic calcium ion concentration.


1989 ◽  
Vol 257 (3) ◽  
pp. H778-H784 ◽  
Author(s):  
W. P. Schilling

The effect of bradykinin on membrane potential of cultured bovine aortic endothelial cells (BAECs) was estimated by measuring the uptake of the lipophilic cation, tetra[3H]phenylphosphonium ([3H]TPP+). Uptake of [3H]TPP+ was found to be 1) a function of extracellular K+ concentration, 2) sensitive to valinomycin, and 3) decreased by the K+ channel inhibitor, Ba2+, suggesting that the uptake of [3H]TPP+ responds to changes in membrane potential of the BAEC. Bradykinin (50 nM) produced an increase in [3H]TPP+ uptake in low K+ buffer consistent with a bradykinin-induced membrane hyperpolarization. The effect of membrane depolarization with high K+ buffer on the bradykinin-stimulated changes in cytosolic Ca2+ was determined using the fluorescent Ca2+ indicator, fura-2. The results of these experiments demonstrated that both basal cytosolic Ca2+ and bradykinin-stimulated release of Ca2+ from internal stores were not affected by membrane depolarization. However, bradykinin-stimulated influx of Ca2+ from the extracellular space decreased with membrane depolarization in a manner consistent with the movement of Ca2+ through a channel.


2001 ◽  
Vol 281 (3) ◽  
pp. H1327-H1333 ◽  
Author(s):  
Muthuvel Jayachandran ◽  
Toshio Hayashi ◽  
Daigo Sumi ◽  
Akihisa Iguchi ◽  
Virginia M. Miller

Endothelial nitric oxide synthase (eNOS) is regulated both by caveolin-1 and 17β-estradiol (E2). Temporal relationships between effects of estrogen on caveolin-1 and nitric oxide (NO) are not known. Therefore, this study was designed to determine whether estrogen regulates caveolin-1 and, if so, whether such regulation corresponds to changes in nitrite/nitrate (NOx) production. Bovine aortic endothelial cells (BAECs) were cultured in the absence and presence of 17β-estradiol or 17α-estradiol (10−8 and 10−10 M) for 12, 24, and 48 h. eNOS protein expression and NOx production increased significantly after 24 h but not after 12-h treatment with 17β- and not 17α-estradiol. Both mRNA and protein for caveolin-1 were increased significantly only after 48-h treatment with E2, but eNOS protein and NOx production were decreased compared with cells treated for 24 h. These increases in caveolin-1 were inhibited by the estrogen receptor antagonist ICI-182,780 (10−6 M). Results of this study suggest that E2 stimulates caveolin-1 transcription and translation through estrogen receptor-mediated mechanisms. The results further suggest that estrogen may indirectly regulate NOx through caveolin-1 expression, which inhibits eNOS catalytic activity.


2011 ◽  
Vol 670 (2-3) ◽  
pp. 566-570 ◽  
Author(s):  
Marie-Clotilde Berthe ◽  
Mélisande Bernard ◽  
Carole Rasmusen ◽  
Sylviane Darquy ◽  
Luc Cynober ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document