scholarly journals Factors underlying the increased sensitivity to field stimulation of urinary bladder strips from streptozotocin-induced diabetic rats

1994 ◽  
Vol 113 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Teuvo L.J. Tammela ◽  
Janice A.K. Briscoe ◽  
Robert M. Levin ◽  
Penelope A. Longhurst
1989 ◽  
Vol 20 (5) ◽  
pp. 663-669 ◽  
Author(s):  
Carlo Alberto Maggi ◽  
Riccardo Patacchini ◽  
Paolo Santicioli ◽  
Damiano Turini ◽  
Gabriele Barbanti ◽  
...  

1979 ◽  
Vol 174 (2) ◽  
pp. 85-91 ◽  
Author(s):  
T.V. Ortoidze ◽  
Galina P. Borisevitch ◽  
P.S. Venediktov ◽  
A.A. Kononenko ◽  
D.N. Matorin ◽  
...  

Open Medicine ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. 192-197 ◽  
Author(s):  
A. Canda ◽  
Christopher Chapple ◽  
Russ Chess-Williams

AbstractThe aim of the study was to determine pathways involved in contraction and relaxation of the mouse urinary bladder. Mouse bladder strips were set up in gassed Krebs-bicarbonate solution and responses to various drugs and electrical field stimulation were obtained. Isoprenaline (b-receptor agonist) caused a 63% inhibition of carbachol precontracted detrusor (EC50=2nM). Carbachol caused contraction (EC50=0.3µM), responses were antagonised more potently by 4-DAMP (M3-antagonist) than methoctramine (M2-antagonist). Electrical field stimulation caused contraction, which was inhibited by atropine (60%) and less by guanethidine and α,β-methylene-ATP. The neurogenic responses were not potentiated by inhibition of nitric oxide synthase. Presence of an intact urothelium significantly depressed responses to carbachol (p=0.02) and addition of indomethacin and L-NNA to remove prostaglandin and nitric oxide production respectively did not prevent the inhibitory effect of the urothelium. In conclusion, b-receptor agonists cause relaxation and muscarinic agonists cause contraction via the M3-receptor. Acetylcholine is the main neurotransmitter causing contraction while nitric oxide has a minor role. The mouse and human urothelium are similar in releasing a factor that inhibits contraction of the detrusor muscle which is unidentified but is not nitric oxide or a prostaglandin. Therefore, the mouse may be used as a model to study the lower urinary tract.


Sign in / Sign up

Export Citation Format

Share Document