electric field stimulation
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 174544
Author(s):  
José Britto-Júnior ◽  
Luiz Ximenes ◽  
André Ribeiro ◽  
Adriano Fregonesi ◽  
Rafael Campos ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Christina N. M. Ryan ◽  
Meletios N. Doulgkeroglou ◽  
Dimitrios I. Zeugolis

AbstractElectric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Ángel Aragón ◽  
María Cebro-Márquez ◽  
Eliseo Perez ◽  
Antonio Pazos ◽  
Ricardo Lage ◽  
...  

Abstract Background Cardio myoblast generation from conventional approaches is laborious and time-consuming. We present a bioelectronics on-a-chip for stimulating cells cardio myoblast proliferation during culture. Method The bioelectronics chip fabrication methodology involves two different process. In the first step, an aluminum layer of 200 nm is deposited over a soda-lime glass substrate using physical vapor deposition and selectively removed using a Q-switched Nd:YVO4 laser to create the electric tracks. To perform the experiments, we developed a biochip composed of a cell culture chamber fabricated with polydimethylsiloxane (PDMS) with a glass coverslip or a cell culture dish placed over the electric circuit tracks. By using such a glass cover slip or cell culture dish we avoid any toxic reactions caused by electrodes in the culture or may be degraded by electrochemical reactions with the cell medium, which is crucial to determine the effective cell-device coupling. Results The chip was used to study the effect of electric field stimulation of Rat ventricular cardiomyoblasts cells (H9c2). Results shows a remarkable increase in the number of H9c2 cells for the stimulated samples, where after 72 h the cell density double the cell density of control samples. Conclusions Cell proliferation of Rat ventricular cardiomyoblasts cells (H9c2) using the bioelectronics-on-a-chip was enhanced upon the electrical stimulation. The dependence on the geometrical characteristics of the electric circuit on the peak value and homogeneity of the electric field generated are analyzed and proper parameters to ensure a homogeneous electric field at the cell culture chamber are obtained. It can also be observed a high dependence of the electric field on the geometry of the electrostimulator circuit tracks and envisage the potential applications on electrophysiology studies, monitoring and modulate cellular behavior through the application of electric fields.


2020 ◽  
Author(s):  
Angel Aragon ◽  
María Cebro-Márquez ◽  
Eliseo Perez ◽  
Antonio Pazos ◽  
Ricardo Lage ◽  
...  

Abstract Background: Cardio myoblast generation from conventional approaches is laborious and time-consuming. We present a bioelectronics on-a-chip for stimulating cells cardio myoblast proliferation during culture. Method: The bioelectronics chip fabrication methodology involves two different process. In the first step, an aluminum layer of 200 nm is deposited over a soda-lime glass substrate using physical vapor deposition and selectively removed using a Q-switched Nd:YVO4 laser to create the electric tracks. To perform the experiments, we developed a biochip composed of a cell culture chamber fabricated with polydimethylsiloxane (PDMS) with a glass coverslip or a cell culture dish placed over the electric circuit tracks. By using such a glass cover slip or cell culture dish we avoid any toxic reactions caused by electrodes in the culture or may be degraded by electrochemical reactions with the cell medium, which is crucial to determine the effective cell-device coupling. Results: The chip was used to study the effect of electric field stimulation of Rat ventricular cardiomyoblasts cells (H9c2). Results shows a remarkable increase in the number of H9c2 cells for the stimulated samples, where after 72 hours the cell density double the cell density of control samples. Conclusions: Cell proliferation of Rat ventricular cardiomyoblasts cells (H9c2) using the bioelectronics-on-a-chip was enhanced upon the electrical stimulation. The dependence on the geometrical characteristics of the electric circuit on the peak value and homogeneity of the electric field generated are analyzed and proper parameters to ensure a homogeneous electric field at the cell culture chamber are obtained. It can also be observed a high dependence of the electric field on the geometry of the electrostimulator circuit tracks and envisage the potential applications on electrophysiology studies, monitoring and modulate cellular behavior through the application of electric fields


2020 ◽  
Author(s):  
Subhadip Basu ◽  
Biswajit Gorai ◽  
Bikramjit Basu ◽  
Prabal K. Maiti

AbstractIn experimental research driven biomaterials science, the influence of different material properties (elastic stiffness, surface energy, etc.), and to a relatively lesser extent, the biophysical stimulation (electric/magnetic) on the cell-material interaction has been extensively investigated. Considering the central importance of the protein adsorption on cell-material interaction, the role of physiochemical factors on the protein adsorption is also probed. Despite its significance, the quantitative analysis of many such aspects remains largely unexplored in biomaterials science. In recent studies, the critical role of electric field stimulation towards modulation of cell functionality on implantable biomaterials has been experimentally demonstrated. Given this background, we investigated the influence of external electric field stimulation (upto 1.00 V/nm) on fibronectin (FN) adsorption on hydroxyapatite, HA (100) surface at 300K using all-atom MD simulation method. Fibronectin adsorption was found to be governed by the attractive electrostatic interaction, which changed with the electric field strength. Non-monotonous changes in structural integrity of fibronectin were recorded with the change in field strength and direction. This can be attributed to the spatial rearrangement of local charges and global structural changes of the protein. The dipole moment vectors of fibronectin, water and HA quantitatively exhibited similar pattern of orienting themselves parallel to the field direction, with field strength dependent increase in their magnitudes. No significant change has been recorded for radial distribution function of water surrounding fibronectin. Field dependent variation in the salt bridge nets and number of hydrogen bonds between fibronectin and hydroxyapatite were also examined. One of the important results in the context of the cell-material interaction is that the RGD sequence of FN was exposed to solvent side, when the field was applied along a direction outward perpendicular to HA (001) surface. Summarizing, the present study provides quantitative insights into the influence of electric field stimulation on biomolecular interactions involved in fibronectin adsorption on hydroxyapatite surface.


2020 ◽  
Author(s):  
Harold Bien ◽  
Salmon Kalkhoran ◽  
Emilia Entcheva

AbstractCardiac tissue subjected to fast pacing via electric field stimulation revealed hysteresis in calcium instability patterns (stimulus:response patterns) beyond departure and return to 1:1 response. The pacing frequency at which the first appearance of instabilities occurred (Fa) was higher than the frequency of ultimate disappearance (Fd) upon rate deceleration. Furthermore, hysteresis was observed in multiple pattern transitions. In the spatially extended system studied here, 2:2 alternans were the preferred starting point (Fa) in calcium instability development, while 2:1 blocks were more common in the return to Fa from higher pacing rates. Recovery of 1:1 patterns was preceded mostly by 2:2 alternans at Fd. In addition to previously reported hysteresis in action potential duration during 1:1 rhythm and alternans magnitude hysteresis (in 2:2 rhythm), our data reveal hysteresis in rhythm pattern transitions not just away from and return to 1:1, but also between different instability patterns, and thus provide insight into the rules of such transitions in electrically stimulated cardiac tissue.


Sign in / Sign up

Export Citation Format

Share Document