Role of L-Type Calcium Channel Window Current in Generating Current-Induced Early Afterdepolarizations

1994 ◽  
Vol 5 (4) ◽  
pp. 323-334 ◽  
Author(s):  
ZHEN MING ◽  
CHARLES NORDIN ◽  
RONALD S. ARONSON
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fernando R. Fernandez ◽  
Mircea C. Iftinca ◽  
Gerald W. Zamponi ◽  
Ray W. Turner

AbstractT-type calcium channels are important regulators of neuronal excitability. The mammalian brain expresses three T-type channel isoforms (Cav3.1, Cav3.2 and Cav3.3) with distinct biophysical properties that are critically regulated by temperature. Here, we test the effects of how temperature affects spike output in a reduced firing neuron model expressing specific Cav3 channel isoforms. The modeling data revealed only a minimal effect on baseline spontaneous firing near rest, but a dramatic increase in rebound burst discharge frequency for Cav3.1 compared to Cav3.2 or Cav3.3 due to differences in window current or activation/recovery time constants. The reduced response by Cav3.2 could optimize its activity where it is expressed in peripheral tissues more subject to temperature variations than Cav3.1 or Cav3.3 channels expressed prominently in the brain. These tests thus reveal that aspects of neuronal firing behavior are critically dependent on both temperature and T-type calcium channel subtype.


2019 ◽  
Vol 123 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Yuko Koyanagi ◽  
Christina L. Torturo ◽  
Daniel C. Cook ◽  
Zhenyu Zhou ◽  
Hugh C. Hemmings

1990 ◽  
Vol 259 (5) ◽  
pp. R925-R930
Author(s):  
M. Haass ◽  
C. Forster ◽  
G. Richardt ◽  
R. Kranzhofer ◽  
A. Schomig

The role of calcium for the release of norepinephrine (NE, determined by high-pressure liquid chromatography) and neuropeptide Y (NPY, determined by radioimmunoassay) was investigated in guinea pig perfused hearts with intact sympathetic innervation. In the presence of extracellular calcium (1.85 mM), electrical stimulation of the left stellate ganglion (12 Hz, 1 min) induced a closely related release of NE and NPY with the molar ratio of approximately 400-600 (NE) to 1 (NPY). The stimulation-evoked overflow of both transmitters was dependent from the extracellular calcium concentration and was almost completely suppressed by calcium-free perfusion. The corelease of both transmitters was not affected by the L-type calcium channel blocker felodipine (1-10 microM). However, the overflow of NE and NPY was markedly attenuated by the unselective calcium antagonist flunarizine (1-10 microM) and completely prevented by the neuronal (N-type) calcium channel blockers omega-conotoxin (1-100 nM) and cadmium chloride (10-100 microM), indicating a key role for N-type calcium channels in the exocytotic release of transmitters from cardiac sympathetic nerve fibers. Possibly due to unspecific actions, such as interference with sodium channels or uptake1-blocking properties, the phenylalkylamines verapamil (0.01-10 microM) and gallopamil (1-10 microM) reduced NPY overflow with only a minor effect on NE overflow. The stimulation-induced transmitter release was increased up to twofold by activation of protein kinase C (phorbol 12-myristate 13-acetate, 3 nM-3 microM) and completely suppressed by inhibition of protein kinase C (polymyxin B, 100 microM).(ABSTRACT TRUNCATED AT 250 WORDS)


Channels ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 378-387 ◽  
Author(s):  
Bohumila Jurkovicova-Tarabova ◽  
Katarina Mackova ◽  
Lucia Moravcikova ◽  
Maria Karmazinova ◽  
Lubica Lacinova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document