scholarly journals Modeling temperature- and Cav3 subtype-dependent alterations in T-type calcium channel mediated burst firing

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fernando R. Fernandez ◽  
Mircea C. Iftinca ◽  
Gerald W. Zamponi ◽  
Ray W. Turner

AbstractT-type calcium channels are important regulators of neuronal excitability. The mammalian brain expresses three T-type channel isoforms (Cav3.1, Cav3.2 and Cav3.3) with distinct biophysical properties that are critically regulated by temperature. Here, we test the effects of how temperature affects spike output in a reduced firing neuron model expressing specific Cav3 channel isoforms. The modeling data revealed only a minimal effect on baseline spontaneous firing near rest, but a dramatic increase in rebound burst discharge frequency for Cav3.1 compared to Cav3.2 or Cav3.3 due to differences in window current or activation/recovery time constants. The reduced response by Cav3.2 could optimize its activity where it is expressed in peripheral tissues more subject to temperature variations than Cav3.1 or Cav3.3 channels expressed prominently in the brain. These tests thus reveal that aspects of neuronal firing behavior are critically dependent on both temperature and T-type calcium channel subtype.

2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Cory J. White ◽  
Jieun Lee ◽  
Joseph Choi ◽  
Tiffany Chu ◽  
Susanna Scafidi ◽  
...  

ABSTRACT The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B−/−). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.


2021 ◽  
Author(s):  
Gabriel Leal Carvalho ◽  
Isadora Ghilardi ◽  
Allan Alcará ◽  
Felipe Rodrigues ◽  
Ângela Zanatta ◽  
...  

Introduction: Temporal Lobe Epilepsy (TLE) is the most common refractory epilepsy, and it is characterized by abnormal firing of a population of neurons in the brain, and by cognitive deficit1 . This abnormal intrinsic phenomenon can cause deregulation of the T-type calcium channels, increasing neuronal excitability, leading to structural changes in the Central Nervous System2 . Mesenchymal Stem Cells (MSCs) are a therapeutic alternative for the TLE for they can modulate neurotransmitters liberation, reducing neuronal death and increasing neurogenesis3,4,5. The present study analyzed MSCs effects on gene expression of T-type calcium channel CACNA1H in the brain of pilocarpine-induced TLE animal models. Methods: The MSCs were obtained from the bone marrow of Wistar rats, cultured, and transplanted intravenously and intranasally. The animals were separated into the following groups: control and pilocarpine-induced status epilepticus, then they were euthanized 1- and 7-days post-transplant for gene expression analysis. Results: The results show that 1-day post-transplant there was no difference in the CACNA1H gene expression between the MSC-treated pilocarpine groups and the control and untreated pilocarpine groups. Subsequently 7-days posttransplant, the treated groups showed greater expression of the gene in both means of administration. Moreover, there was an increase in CACNA1H gene expression in the prefrontal cortex of the treated pilocarpine group, which makes us conjecture a mechanism of greater need for its transcription in this area. Conclusion: Thus, MSCs were able to modulate the expression of the CACNA1H gene in the brain, increasing its importance as a target for future studies on epilepsy therapies involving cells.


2020 ◽  
Vol 117 (33) ◽  
pp. 20254-20264 ◽  
Author(s):  
Deng Zhang ◽  
Xingjian Yan ◽  
Liang She ◽  
Yunqing Wen ◽  
Mu-ming Poo

Correlated activation of cortical neurons often occurs in the brain and repetitive correlated neuronal firing could cause long-term modifications of synaptic efficacy and intrinsic excitability. We found that repetitive optogenetic activation of neuronal populations in the mouse cortex caused enhancement of optogenetically evoked firing of local coactivated neurons as well as distant cortical neurons in both ipsilateral and contralateral hemispheres. This global enhancement of evoked responses required coactivation of a sufficiently large population of neurons either within one cortical area or distributed in several areas. Enhancement of neuronal firing was saturable after repeated episodes of coactivation, diminished by inhibition ofN-methyl-d-aspartic acid receptors, and accompanied by elevated excitatory postsynaptic potentials, all consistent with activity-induced synaptic potentiation. Chemogenetic inhibition of neuronal activity of the thalamus decreased the enhancement effect, suggesting thalamic involvement. Thus, correlated excitation of large neuronal populations leads to global enhancement of neuronal excitability.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


1863 ◽  
Vol 12 ◽  
pp. 671-673

By a new process of investigation, I have succeeded in demonstrating the connexion between the nerve-cells and fibres in the grey matter of the convolutions and in other parts of the mammalian brain, and have followed individual fibres for a much greater distance than can be effected in sections prepared by other processes of investigation which I have tried. In many instances one thick fibre is continuous with one or other extremity of the “cell,” while from its opposite portion from three to six or eight thinner fibres diverge in a direction onwards and outwards. This arrangement is particularly distinct in the grey matter of the sheep’s brain.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 883 ◽  
Author(s):  
Debajyoti Chowdhury ◽  
Chao Wang ◽  
Ai-Ping Lu ◽  
Hai-Long Zhu

Circadian rhythms have a deep impact on most aspects of physiology. In most organisms, especially mammals, the biological rhythms are maintained by the indigenous circadian clockwork around geophysical time (~24-h). These rhythms originate inside cells. Several core components are interconnected through transcriptional/translational feedback loops to generate molecular oscillations. They are tightly controlled over time. Also, they exert temporal controls over many fundamental physiological activities. This helps in coordinating the body’s internal time with the external environments. The mammalian circadian clockwork is composed of a hierarchy of oscillators, which play roles at molecular, cellular, and higher levels. The master oscillation has been found to be developed at the hypothalamic suprachiasmatic nucleus in the brain. It acts as the core pacemaker and drives the transmission of the oscillation signals. These signals are distributed across different peripheral tissues through humoral and neural connections. The synchronization among the master oscillator and tissue-specific oscillators offer overall temporal stability to mammals. Recent technological advancements help us to study the circadian rhythms at dynamic scale and systems level. Here, we outline the current understanding of circadian clockwork in terms of molecular mechanisms and interdisciplinary concepts. We have also focused on the importance of the integrative approach to decode several crucial intricacies. This review indicates the emergence of such a comprehensive approach. It will essentially accelerate the circadian research with more innovative strategies, such as developing evidence-based chronotherapeutics to restore de-synchronized circadian rhythms.


1993 ◽  
Vol 265 (3) ◽  
pp. R481-R486 ◽  
Author(s):  
Y. Hirosue ◽  
A. Inui ◽  
A. Teranishi ◽  
M. Miura ◽  
M. Nakajima ◽  
...  

To examine the mechanism of the satiety-producing effect of cholecystokinin (CCK) in the central nervous system, we compared the potency of intraperitoneally (ip) or intracerebroventricularly (icv) administered CCK-8 and its analogues on food intake in fasted mice. The icv administration of a small dose of CCK-8 (0.03 nmol/brain) or of Suc-(Thr28, Leu29, MePhe33)-CCK-7 (0.001 nmol/brain) suppressed food intake for 20 min, whereas CCK-8 (1 nmol/kg, which is equivalent to 0.03 nmol/brain) or Suc-(Thr28, Leu29, MePhe33)-CCK-7 (1 nmol/kg) had satiety effect after ip administration. Dose-response studies indicated the following rank order of potency: Suc-CCK-7 > or = Suc-(Thr28, Leu29, MePhe33)-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of ip administration and Suc-(Thr28, Leu29, MePhe33)-CCK-7 >> Suc-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of icv administration. The selective CCK-A receptor antagonist MK-329 reversed the inhibitory effect of the centrally as well as peripherally administered CCK-8, or of Suc-(Thr28, Leu29, MePhe33)-CCK-7, whereas the selective CCK-B receptor antagonist L-365260 did not. The icv administered CCK-8 did not appear in the peripheral circulation. These findings suggest the participation of CCK-A receptors in the brain in mediating the satiety effect of CCK and the difference in CCK-A receptors in the brain and peripheral tissues.


2016 ◽  
Vol 397 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Till Georg Alexander Mack ◽  
Patricia Kreis ◽  
Britta Johanna Eickholt

Abstract Ageing is a complex deteriorating process that coincides with changes in metabolism, replicative senescence, increased resistance to apoptosis, as well as progressive mitochondria dysfunction that lead to an increase production and accumulation of reactive oxygen species (ROS). Although controversy on the paradigm of the oxidative damage theory of ageing exists, persuasive studies in Caenorhabditis elegans and yeast have demonstrated that manipulation of ROS can modify the process of ageing and influences the damage of proteins, lipids and DNA. In neurons, ageing impacts on the intrinsic neuronal excitability, it decreases the size of neuronal soma and induces the loss of dendrites and dendritic spines. The actin cytoskeleton is an abundant and broadly expressed system that plays critical functions in many cellular processes ranging from cell motility to controlling cell shape and polarity. It is thus hardly surprising that the expression and the function of actin in neurons is crucial for the morphological changes that occur in the brain throughout life. We propose that alterations in actin filament dynamics in dendritic spines may be one of the key events contributing to the initial phases of ageing in the brain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Austin Ferro ◽  
Yohan S. S. Auguste ◽  
Lucas Cheadle

Intercellular signaling molecules such as cytokines and their receptors enable immune cells to communicate with one another and their surrounding microenvironments. Emerging evidence suggests that the same signaling pathways that regulate inflammatory responses to injury and disease outside of the brain also play powerful roles in brain development, plasticity, and function. These observations raise the question of how the same signaling molecules can play such distinct roles in peripheral tissues compared to the central nervous system, a system previously thought to be largely protected from inflammatory signaling. Here, we review evidence that the specialized roles of immune signaling molecules such as cytokines in the brain are to a large extent shaped by neural activity, a key feature of the brain that reflects active communication between neurons at synapses. We discuss the known mechanisms through which microglia, the resident immune cells of the brain, respond to increases and decreases in activity by engaging classical inflammatory signaling cascades to assemble, remodel, and eliminate synapses across the lifespan. We integrate evidence from (1) in vivo imaging studies of microglia-neuron interactions, (2) developmental studies across multiple neural circuits, and (3) molecular studies of activity-dependent gene expression in microglia and neurons to highlight the specific roles of activity in defining immune pathway function in the brain. Given that the repurposing of signaling pathways across different tissues may be an important evolutionary strategy to overcome the limited size of the genome, understanding how cytokine function is established and maintained in the brain could lead to key insights into neurological health and disease.


Author(s):  
Lucas da Costa Campos ◽  
Raphael Hornung ◽  
Gerhard Gompper ◽  
Jens Elgeti ◽  
Svenja Caspers

AbstractThe morphology of the mammalian brain cortex is highly folded. For long it has been known that specific patterns of folding are necessary for an optimally functioning brain. On the extremes, lissencephaly, a lack of folds in humans, and polymicrogyria, an overly folded brain, can lead to severe mental retardation, short life expectancy, epileptic seizures, and tetraplegia. The construction of a quantitative model on how and why these folds appear during the development of the brain is the first step in understanding the cause of these conditions. In recent years, there have been various attempts to understand and model the mechanisms of brain folding. Previous works have shown that mechanical instabilities play a crucial role in the formation of brain folds, and that the geometry of the fetal brain is one of the main factors in dictating the folding characteristics. However, modeling higher-order folding, one of the main characteristics of the highly gyrencephalic brain, has not been fully tackled. The effects of thickness inhomogeneity in the gyrogenesis of the mammalian brain are studied in silico. Finite-element simulations of rectangular slabs are performed. The slabs are divided into two distinct regions, where the outer layer mimics the gray matter, and the inner layer the underlying white matter. Differential growth is introduced by growing the top layer tangentially, while keeping the underlying layer untouched. The brain tissue is modeled as a neo-Hookean hyperelastic material. Simulations are performed with both, homogeneous and inhomogeneous cortical thickness. The homogeneous cortex is shown to fold into a single wavelength, as is common for bilayered materials, while the inhomogeneous cortex folds into more complex conformations. In the early stages of development of the inhomogeneous cortex, structures reminiscent of the deep sulci in the brain are obtained. As the cortex continues to develop, secondary undulations, which are shallower and more variable than the structures obtained in earlier gyrification stage emerge, reproducing well-known characteristics of higher-order folding in the mammalian, and particularly the human, brain.


Sign in / Sign up

Export Citation Format

Share Document