Posttraumatic Multiple-organ Dysfunction Syndrome: Role of Mediators in Systemic Inflammation and Subsequent Organ Failure

1996 ◽  
Vol 3 (6) ◽  
pp. 611-623 ◽  
Author(s):  
Stephen M. Pastores ◽  
Aminidhan Thakkar ◽  
Paul Gennis ◽  
David P. Katz ◽  
Vladimir Kvetan
2015 ◽  
Author(s):  
Vishal Bansal ◽  
Jay Doucet

The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.


2015 ◽  
Author(s):  
Vishal Bansal ◽  
Jay Doucet

The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.


2018 ◽  
Vol 08 (01) ◽  
pp. 025-031 ◽  
Author(s):  
Diana Pang ◽  
Dalia Bashir ◽  
Joseph Carcillo ◽  
Trung Nguyen ◽  
Rajesh Aneja ◽  
...  

AbstractThe incidence of multiple organ dysfunction syndrome (MODS) in sepsis varies from 17 to 73% and furthermore, increases the risk of death by 60% when controlled for the number of dysfunctional organs. Several MODS phenotypes exist, each unique in presentation and pathophysiology. Common to the phenotypes is the stimulation of the immune response by pathogen-associated molecular patterns (PAMPs), or danger-associated molecular patterns (DAMPs) causing an unremitting inflammation. Two of the MODS phenotypes are discussed in detail, thrombocytopenia-associated multiple organ failure (TAMOF) and the hyperinflammatory phenotype–macrophage activating syndrome (MAS) and hemophagocytic lymphohistiocytosis (HLH). In the end, we will briefly review the role of mitochondrial dysfunction as a significant contributor to the pathogenesis of MODS.


2004 ◽  
Vol 30 (4) ◽  
pp. 665-672 ◽  
Author(s):  
Hendrik Schmidt ◽  
Ursula M�ller-Werdan ◽  
Sebastian Nuding ◽  
Thomas Hoffmann ◽  
Darrel P. Francis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document