Phytoplankton cell size and the development of microenvironments

1995 ◽  
Vol 16 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Laurie L. Richardson ◽  
Keith D. Stolzenbach
Keyword(s):  
2021 ◽  
Vol 43 ◽  
pp. 101659
Author(s):  
Nayana Buarque A. Silva ◽  
Manuel Flores-Montes ◽  
Marcella Guennes ◽  
Gislayne Borges ◽  
Carlos Noriega ◽  
...  

Author(s):  
Tiancai Liao

In this paper, we establish a new phytoplankton-zooplankton model by considering the effects of plankton body size and stochastic environmental fluctuations. Mathematical theory work mainly gives the existence of boundary and positive equilibria, and shows their local as well as global stability in the deterministic model. Additionally, we explore the dynamics of V-geometric ergodicity, stochastic ultimate boundedness, stochastic permanence, persistence in the mean, stochastic extinction and the existence of a unique ergodic stationary distribution in the corresponding stochastic version. Numerical simulation work mainly reveals that plankton body size can generate great influences on the interactions between phytoplankton and zooplankton, which in turn proves the effectiveness of mathematical theory analysis. It is worth emphasizing that for the small value of phytoplankton cell size, the increase of zooplankton body size can not change the phytoplankton density or zooplankton density; for the middle value of phytoplankton cell size, the increase of zooplankton body size can decrease zooplankton density or phytoplankton density; for the large value of phytoplankton body size, the increase of zooplankton body size can increase zooplankton density but decrease phytoplankton density. Besides, it should be noted that the increase of zooplankton body size can not affect the effect of random environmental disturbance, while the increase of phytoplankton cell size can weaken its effect. There results may enrich the dynamics of phytoplankton-zooplankton models.


2019 ◽  
Vol 41 (6) ◽  
pp. 955-966
Author(s):  
Alessandra Janina Kunzmann ◽  
Harald Ehret ◽  
Elizabeth Yohannes ◽  
Dietmar Straile ◽  
Karl-Otto Rothhaupt

Abstract Cultural oligotrophication is expected to shift lake zooplankton to become dominated by calanoid copepods. Hence, understanding the influence of calanoids on the taxonomic and size structure of the lower plankton food web is crucial for predicting the effects of oligotrophication on energy fluxes in these systems. We studied the effect of an omnivorous calanoid, Eudiaptomus gracilis, on the lower planktonic food web using an in situ incubation approach in large and deep Lake Constance. We show that E. gracilis significantly reduced ciliate, phytoplankton, rotifer, but increased bacteria biovolume. Highest clearance rates were observed for ciliates whose biovolume declines may have caused a release of predation pressure on bacteria. E. gracilis grazing shifted the size structure of the phytoplankton community by reducing mean phytoplankton cell size (directional selection) and simultaneously increasing cell size variance (disruptive selection). Ciliate cell sizes experienced a similar selective regime in one of the experiments, whereas in the other two experiments, no change of size structure was detected. Results suggest strong influences of E. gracilis grazing on the lower plankton food web and a significant shift in phytoplankton size structure. For evaluating detailed effects of omnivorous consumers on plankton size structure, cascading interactions need to be considered.


Data in Brief ◽  
2018 ◽  
Vol 20 ◽  
pp. 337-344
Author(s):  
Silvia Pulina ◽  
Cecilia Teodora Satta ◽  
Antonella Lugliè ◽  
Nicola Sechi ◽  
Bachisio Mario Padedda

Sign in / Sign up

Export Citation Format

Share Document