calanoid copepods
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 66)

H-INDEX

50
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Maria Emília Cunha ◽  
Hugo Quental Ferreira ◽  
Ana Barradas ◽  
Pedro Pousão-Ferreira

The effects of bottom vertical structures like AquaMats® in enhancing plankton productivity was evaluated. One experimental earthen pond of 500 m2 was provided with AquaMats® increasing the surface substrate area 12 times and water quality, phytoplankton and zooplankton populations developed during almost 100 days was compared with a pond without AquaMats®. Their presence favored the development of Dinoflagellates (Miozoa, Dinophyceae), mostly Gymnodiniales, which may be of some concern since some species of this group have been associated with toxic algal blooms while in the ponds without AquaMats® Diatoms (Bacillariophyta) predominate. In both ponds plankton production was very much sculptured by external nutrients added to the systems. The balance between different nutrients is extremely important to regulate the phytoplankton populations with Diatoms blooming at silicate concentrations higher than 2 μM and below this level and at low nitrate and high ammonium being more appropriate for Dinoflagellates. The linkage between phytoplankton and zooplankton population in ponds is strong with zooplankton exerting control over the phytoplankton population and vice-versa. The use of vertical substrates enhances plankton productivity by increasing the substrate area for periphyton fixation. The main zooplankton taxonomic groups associated with the presence of AquaMats® were Calanoid and Harpacticoid copepodites and nauplii, veligers of gastropods and trochophore of polychaets, larval stages of organisms that except for calanoid copepods are benthic and correspond to the meroplanktonic phase in the life cycle of those organisms.


2021 ◽  
pp. 341-354
Author(s):  
Daniel K. Hartline ◽  
Petra H. Lenz ◽  
Christen M. Herren

2021 ◽  
Vol 8 ◽  
Author(s):  
María Luz Fernández de Puelles ◽  
Magdalena Gazá ◽  
Miguel Cabanellas-Reboredo ◽  
Alba González-Vega ◽  
Inma Herrera ◽  
...  

The mesozooplankton community was analyzed over a 6-year period (2013-2018) during the post-eruptive stage of the submarine volcano Tagoro, located south of the island of El Hierro (Canary Archipelago, Spain). Nine cruises from March 2013 to March 2018 were carried out in two different seasons, spring (March-April) and autumn (October). A high-resolution study was carried out across the main cones of Tagoro volcano, as well as a large number of reference stations surrounding El Hierro (unaffected by the volcano). The zooplankton community at the reference stations showed a high similarity with more than 85% of the variation in abundance and composition attributable to seasonal differences. Moreover, our data showed an increase in zooplankton abundance in waters affected by the volcano with a higher presence of non-calanoid copepods and a decline in the diversity of the copepod community, indicating that volcanic inputs have a significant effect on these organisms. Fourteen different zooplankton groups were found but copepods were dominant (79%) with 59 genera and 170 species identified. Despite the high species number, less than 30 presented a larger abundance than 1%. Oncaea and Clausocalanus were the most abundant genera followed by Oithona and Paracalanus (60%). Nine species dominated (>2%): O. media, O. plumifera, and O. setigera among the non-calanoids and M. clausi, P. nanus, P. parvus, C. furcatus, C. arcuicornis, and N. minor among the calanoids. After the initial low abundance of the copepods as a consequence of the eruption, an increase was observed in the last years of the study, where besides the small Paracalanus and Clausocalanus, the Cyclopoids seem to have a good adaptive strategy to the new water conditions. The increase in zooplankton abundance and the decline in the copepod diversity in the area affected by the volcano indicate that important changes in the composition of the zooplankton community have occurred. The effect of the volcanic emissions on the different copepods was more evident in spring when the water was cooler and the mixing layer was deeper. Further and longer research is recommended to monitor the zooplankton community in the natural laboratory of the Tagoro submarine volcano.


Author(s):  
Adam L. Daw ◽  
Brie L. Sarkisian ◽  
Reginald B. Blaylock ◽  
Eric A. L. Saillant

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1442
Author(s):  
Sami Souissi ◽  
Anissa Souissi

The development of sentinel species in aquatic ecosystems is mostly based on benthic organisms; however, organisms living in water column such as zooplankton have received less attention, except for some cladocerans. In this paper, a new ecological indicator based on simple measurements of the size and fecundity of egg-bearing calanoid copepods is developed. The well-studied estuarine copepod Eurytemora affinis is used to illustrate this new framework. A large database obtained from laboratory experiments developed under different conditions is used to define a reference regression line between clutch size (CS) and prosome length (PL). The same database allowed one to confirm that the coefficient of variation (CV) of CS is an adequate estimator of the accumulated stress at population level. The CV of PL shows very little variability in all experimental and field conditions. The values of CS and PL obtained from the Seine, Loire, Gironde, Scheldt and Elbe estuaries in Europe are compared to the reference regression line. A quality index (QI) is calculated as a percentage of difference between the observed and the predicted CS. The QI classified 19 samples collected in the Seine estuary between 2004 and 2010 into four classes according to the physiological condition of the copepod female. A single sampling from June 2004 (5.26%) showed a very good condition, whereas 57.9% of the sampling dates confirmed good conditions. On the other hand, four sampling dates were associated to very bad conditions and three sampling dates indicated bad conditions. Seven additional samples obtained from other European estuaries between 2006 and 2009 were also used. Females showing poor conditions were observed in the early spring of 2005 and 2008 as well as during the month of November. These years were characterized by very strong climatic anomalies with a very cold late winter in 2005 and a warm winter in 2008. Therefore, it seems that the QI perfectly reflected the strong stress caused by the sudden change in hydro-climatic conditions that have certainly affected the physiology of copepod females and probably the availability of food. The new indicator is very simple to calculate and can be generalised to several aquatic ecosystems (fresh water and brackish water) by targeting the dominating egg-bearing calanoid copepods. As in the case of E. affinis, the development of sentinel species based on copepods or cladocerans can enrich ecological and ecotoxicological studies given their capacity to integrate the variability of their habitats’ quality at the individual and population levels.


Symbiosis ◽  
2021 ◽  
Author(s):  
Aishwarya Purushothaman ◽  
Tiziana Romagnoli ◽  
Sanu V. Francis ◽  
Lathika Cicily Thomas ◽  
K. B. Padmakumar

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1181
Author(s):  
Hui-Ming Li ◽  
Ping Liu ◽  
Xiao-Li Zhang ◽  
Henri J. Dumont ◽  
Bo-Ping Han

To better understand the fauna of freshwater calanoid copepods of China, including the occurrence of intra- and intergeneric hybridization, we studied five species, distributed across the whole of China or in South China. We sequenced a mitochondrial (COI) and the nuclear ribosome 18S operon (ITS) to reconstruct the phylogenetic trees by using a Bayesian and maximum likelihood (ML) approach with 161 individuals. The phylogeny tree revealed five clades and two geographically separated subclades in both S. ferus and P. tunguidus. We found, for the first time, that the hybrid specimens occurred in Diaptomidae, but low hybridization suggested effective barriers to hybridization and introgression. One hypothesis, that hybridization is recent and was initiated by invasions via canals built between the Yangtze and Pearl rivers c. 2000 years ago, is not supported by K2P genetic distances of the order of 20%. Furthermore, COI analysis of different populations of S. ferus and P. tunguidus revealed two geographical clades in each species, with genetic distances commensurate with cryptic speciation. Both clades occupy subranges maintained without visible barriers to mixis.


Sign in / Sign up

Export Citation Format

Share Document