water column stratification
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 3)

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Krzysztof Ciszewski ◽  
Wawrzyniec Wawrzyniak ◽  
Przemysław Czerniejewski

It is still to be confirmed whether global warming with its predicted elevated water temperature will cause an increase in predation and alter phenological and physiological processes leading to changes in the size of aquatic organisms. In an experimental system of water column stratification simulating a natural combination of field conditions, we created artificial abiotic factors that mimicked the natural environment, i.e., light intensity, oxygen conditions, and thermal stratification. Subsequently, we added biotic factors such as algae, Daphnia, and planktivorous fish. We studied the intensity of foraging of planktivorous fish on individuals of Daphnia per min in different conditions of biotic and abiotic gradients. We demonstrated a possible scenario involving the risk of elimination of large prey within macrocladocera communities by predatory pressure as a result of climate change. A higher intensity of foraging of planktivorous fish caused or increased the occurrence of larger groups of planktonic animals with a smaller body size. The mechanisms of a future scenario were discovered at a higher trophic level in the aquatic environment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dongyoung Kim ◽  
Rubao Ji ◽  
Hyun Je Park ◽  
Zhixuan Feng ◽  
Jaebin Jang ◽  
...  

A subpolar front (SPF) generated between the East Korea Warm Current (EKWC) and the North Korea Cold Current (NKCC) in the western margin of the East/Japan Sea has shifted northward in recent decades. This study investigated the biomass and composition of the phytoplankton assemblage in relation to hydrological and biogeochemical features in the shallow shelf and slope off the Korean coast from January to June in 2016 and 2017, to determine the mechanistic effects of SPF on spring–summer phytoplankton bloom dynamics. Monthly average depth-integrated chlorophyll a (Chl a) levels and the contribution of phytoplankton classes revealed bimodal diatom blooms in early spring and summer in the frontal zone. Canonical correspondence analysis showed that the distribution of high Chl a was associated with cold, low-salinity NKCC water in March 2016. No Chl a peak was observed in March 2017 when the warm saline EKWC water mass invaded. These results suggest that the NKCC intrusion acts as a forcing mechanism leading to enhanced phytoplankton biomass in the frontal zone. In contrast, positive correlations of Chl a concentration with water density and nutrient concentrations suggest that summer blooms were fed by the subsurface chlorophyll maximum (SCM) driven by shoaling of the pycnocline and nitracline. Varying water-column stratification determined the thickness of the SCM layer, driving year-to-year variability in the magnitude of diatom blooms. These findings further suggest that seasonal/interannual variability in the timing of algal blooms affects regional trophodynamics and hence could be an important factor in explaining ecosystem changes in this region.


2021 ◽  
Vol 9 (11) ◽  
pp. 1249
Author(s):  
Christina Giamali ◽  
George Kontakiotis ◽  
Assimina Antonarakou ◽  
Efterpi Koskeridou

This study presents novel findings on the drivers of the calcitic planktonic foraminiferal and aragonitic pteropod Holocene assemblages of the North Aegean Trough (northeastern Mediterranean), an area recording the interaction between dynamic water masses as they exchange between the northern and southern Mediterranean sub-basins. Both of these groups of microorganisms are the major producers of calcium carbonate in the ocean, and are particularly sensitive to climate and oceanographic changes over the late Quaternary. Downcore micropaleontological data from the gravity core AEX-15, supplemented with multivariate statistical Q-mode cluster and principal component analyses (PCA) results, provide significant insights on the water column dynamics during the Holocene. Focusing on the last ~10 calibrated thousands of years before the present day (ka cal BP), our integrated study reveals that primary productivity is the dominant factor controlling the planktonic foraminifera distribution in the North Aegean Sea, whereas water column stratification, and particularly the intensity of the oxygen minimum zone, seems to be the major driver on the pteropod distribution. Besides productivity and thermal stratification, which show the highest explanatory power for planktonic foraminifera and pteropod communities, respectively, though they affect both groups to a different extent, upwelling seems to further affect both faunal groups. Overall, our findings are consistent with those derived by published late Quaternary eastern Mediterranean records, highlighting in parallel a useful additional dimension on planktonic foraminiferal and pteropod ecology, which is inextricably linked with the factors of primary productivity and vertical stratification of the warm Holocene water column.


Geology ◽  
2021 ◽  
Author(s):  
Mathia Sabino ◽  
Daniel Birgel ◽  
Marcello Natalicchio ◽  
Francesco Dela Pierre ◽  
Jörn Peckmann

Group I mesophilic Thaumarchaeota fix dissolved inorganic carbon (DIC), accompanied by a biosynthetic fractionation factor of ~20‰. Accordingly, the δ13C signature of their diagnostic biomarker crenarchaeol was suggested as a potential δ13CDIC proxy in marine basins if input from nonmarine Thaumarchaeota is negligible. Semi-enclosed basins are sensitive to carbon-cycle perturbations, because they tend to develop thermohaline stratification. Water column stratification typified the semi-enclosed basins of the Mediterranean Sea during the late Miocene (Messinian) salinity crisis (5.97–5.33 Ma). To assess how the advent of the crisis affected the carbon cycle, we studied sediments of the Piedmont Basin (northwestern Italy), the northernmost Mediterranean subbasin. A potential bias of our δ13CDIC reconstructions from the input of soil Thaumarchaeota is discarded, since high and increasing branched and isoprenoid tetraether (BIT) index values do not correspond to low and decreasing δ13C values for thaumarchaeal lipids, which would be expected in case of high input from soil Thaumarchaeota. Before the onset of the crisis, the permanently stratified distal part of the basin hosted a water mass below the chemocline with a δ13CDIC value of approximately –3.5‰, while the well-mixed proximal part had a δ13CDIC value of approximately –0.8‰. The advent of the crisis was marked by 13C enrichment of the DIC pool, with positive δ13CDIC excursions up to +5‰ in the upper water column. Export of 12C to the seafloor after phytoplankton blooms and limited replenishment of remineralized carbon due to the stabilization of thermohaline stratification primarily caused such 13C enrichment of the DIC pool.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aida Alvera-Azcárate ◽  
Dimitry Van der Zande ◽  
Alexander Barth ◽  
Charles Troupin ◽  
Samuel Martin ◽  
...  

Satellite-derived estimates of ocean color variables are available for several decades now and allow performing studies of the long-term changes occurred in an ecosystem. A daily, gap-free analysis of chlorophyll (CHL) and suspended particulate matter (SPM, indicative of light availability in the subsurface) at 1 km resolution over the Greater North Sea during the period 1998–2020 is presented. Interannual changes are described, with maximum average CHL values increasing during the period 1998–2008, a slightly decreasing trend in 2009–2017 and an stagnation in recent years. The typical spring bloom is observed to happen earlier each year, with about 1 month difference between 1998 and 2020. The duration of the bloom (time between onset and offset) appears also to be increasing with time, but the average CHL value during the spring bloom does not show a clear trend. The causes for earlier spring blooms are still unclear, although a rising water temperature can partially explain them through enhanced phytoplankton cell division rates or through increased water column stratification. SPM values during winter months (prior to the development of the spring bloom) do not exhibit a clear trend over the same period, although slightly higher SPM values are observed in recent years. The influence of sea surface temperature in the spring bloom timing appears to be dominant over the influence of SPM concentration, according to our results. The number of satellites available over the years for producing CHL and SPM in this work has an influence in the total amount of available data before interpolation. The amount of missing data has an influence in the total variability that is retained in the final dataset, and our results suggest that at least three satellites would be needed for a good representation of ocean color variability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinqiang Guo ◽  
Huamao Yuan ◽  
Jinming Song ◽  
Baoxiao Qu ◽  
Jianwei Xing ◽  
...  

Isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) derived from archaea are lipid biomarkers that exhibit high sensitivity to changes in water temperature, leading to the widespread application of the isoGDGT-based tetraether index of 86 carbon atoms (TEX86) in surface seawater temperature (SST) reconstruction. However, there remain some uncertainties regarding the robustness of TEX86 under changing water conditions (e.g., variations in water depth, oxygen and pH). Here, we analyzed isoGDGTs in suspended particles at different depths of the East China Sea (ECS) during summer 2020, aiming to constrain the applicability of the TEX86 proxy in coastal waters. Our data showed that the isoGDGTs were mainly derived from planktonic Thaumarchaeota, as revealed by the low ratio of GDGT-0/crenarchaeol (<0.5). The vertical distribution of isoGDGT concentration depicted a downward increase from the surface to the bottom. This observation was likely shaped by Thaumarchaeota, which regulate the extent of ammonia oxidation based on the availability of ammonium. The occurrence of maximal isoGDGT concentrations in the bottom layer suggests that the isoGDGTs in sediments are mainly controlled by bottom archaeal production rather than surface archaeal production. By reanalyzing the published isoGDGT data of surface sediments in the ECS inner shelf, we found that the sedimentary TEX86 relates much better to the annual mean bottom seawater temperature (BST) than to the annual mean SST, indicating that sedimentary TEX86 is more inclined to be a proxy for the BST in the shallow ECS. In addition, the positive bias of TEX86 driven by low dissolved oxygen and low pH was observed under the pycnocline, indicating that the application of TEX86 to reconstruct seawater temperature should be carefully appraised in coastal environments with strong water column stratification.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1842
Author(s):  
Ziv Mor ◽  
Hallel Lutzky ◽  
Eyal Shalev ◽  
Nadav G. Lensky

Density, temperature, salinity, and hydraulic head are physical scalars governing the dynamics of aquatic systems. In coastal aquifers, lakes, and oceans, salinity is measured with conductivity sensors, temperature is measured with thermistors, and density is calculated. However, in hypersaline brines, the salinity (and density) cannot be determined by conductivity measurements due to its high ionic strength. Here, we resolve density measurements using a hydrostatic densitometer as a function of an array of pressure sensors and hydrostatic relations. This system was tested in the laboratory and was applied in the Dead Sea and adjacent aquifer. In the field, we measured temporal variations of vertical profiles of density and temperature in two cases, where water density varied vertically from 1.0 × 103 kg·m−3 to 1.24 × 103 kg·m−3: (i) a borehole in the coastal aquifer, and (ii) an offshore buoy in a region with a diluted plume. The density profile in the borehole evolved with time, responding to the lowering of groundwater and lake levels; that in the lake demonstrated the dynamics of water-column stratification under the influence of freshwater discharge and atmospheric forcing. This method allowed, for the first time, continuous monitoring of density profiles in hypersaline bodies, and it captured the dynamics of density and temperature stratification.


2021 ◽  
pp. SP514-2020-271
Author(s):  
Bruno Rodrigues ◽  
Ricardo L. Silva ◽  
João Graciano Mendonça Filho ◽  
Matías Reolid ◽  
Driss Sadki ◽  
...  

AbstractIn this paper, we present a detailed review of upper Pliensbachian-lower Toarcian kerogen assemblages from the southern areas of the West Tethys shelf (between Morocco and northern Spain) and demonstrate the use of the Phytoclast Group as a tracer of palaeoenvironmental changes in the early Toarcian.The kerogen assemblages in the studied sections from the southern areas of the West Tethys shelf are dominated by the Phytoclast Group and terrestrial palynomorphs, although punctual increases in amorphous organic matter (AOM), freshwater (Botryococcus) and marine microplankton (dinoflagellate cysts, acritarchs, and prasinophyte algae) were observed at specific stratigraphic intervals. The opaque/non-opaque phytoclasts (OP/NOP) ratio was used to trace changes in palaeoclimate and other palaeoenvironmental parameters and reflect climate gradients associated with water availability during early Toarcian. During the Pliensbachian-Toarcian and Jenkyns events, changes in kerogen assemblages in the southern areas of the West Tethys shelf correlated with changes in the northern Tethys and Panthalassa shelf.The acceleration of the hydrological cycle associated with the aforementioned events was less intense in the northern Gondwana, southern and western Iberian basins, a reflection of the palaeogeographic position of these basins within the semi-arid climate belt when compared with the northern Iberian region and other northern areas of the West Tethys and Panthalassa shelf, inserted in winter-wet and warm temperate climate belts. AOM enrichment associated with the Pliensbachian-Toarcian and Jenkyns events reflects an increase in primary productivity linked with increased continental weathering, fluvial runoff and riverine OM, and nutrient input into marine areas, inducing water column stratification and promoting the preservation of OM.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5421485


Paleobiology ◽  
2021 ◽  
pp. 1-24
Author(s):  
Heather L. Jones ◽  
Zachary Scrobola ◽  
Timothy J. Bralower

Abstract Calcareous nannoplankton have been one of the dominant primary producers in the surface oceans since the late Triassic. The bolide impact at the Cretaceous/Paleogene (K/Pg) boundary ~66.0 Ma, led to the elimination of >90% of nannoplankton species: the largest extinction event in their evolutionary history. One of the few nannoplankton genera to survive the K/Pg mass extinction and even thrive in its aftermath was Braarudosphaera, which precipitates pentagonal calcite plates (pentaliths). The only Braarudosphaera species to span the K/Pg boundary (B. bigelowii) is extant and has formed geographically and temporally restricted “blooms” throughout geologic time. Four morphologically and genetically distinct cryptic species of B. bigelowii have been identified in the modern ocean. However, it is uncertain whether these cryptic species have disparate ecophysiological tolerances that have allowed them to adapt to varying environmental conditions. For the first time, we assess changes in the size and shape of Braarudosphaera pentaliths following the K/Pg mass extinction at three geographically and environmentally disparate sites that have early Paleocene Braarudosphaera blooms. Our results show that different Braarudosphaera morphotypes were dominant in the Gulf of Mexico compared with the Tethys Ocean, likely due to regional environmental differences. In addition, we provide evidence that the dominant Braarudosphaera morphotypes shifted in response to changes in upper water column stratification. This ability to rapidly adapt to unstable environments likely helped Braarudosphaera thrive in the aftermath of the K/Pg extinction and explains why this lineage has enjoyed such a long evolutionary history.


Data ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 44
Author(s):  
Jae-Hyun Lim ◽  
Il-Nam Kim

Marine bacteria are known to play significant roles in marine biogeochemical cycles regarding the decomposition of organic matter. Despite the increasing attention paid to the study of marine bacteria, research has been too limited to fully elucidate the complex interaction between marine bacterial communities and environmental variables. Jinhae Bay, the study area in this work, is the most anthropogenically eutrophied coastal bay in South Korea, and while its physical and biogeochemical characteristics are well described, less is known about the associated changes in microbial communities. In the present study, we reconstructed a metagenomics data based on the 16S rRNA gene to investigate temporal and vertical changes in microbial communities at three depths (surface, middle, and bottom) during a seven-month period from June to December 2016 at one sampling site (J1) in Jinhae Bay. Of all the bacterial data, Proteobacteria, Bacteroidetes, and Cyanobacteria were predominant from June to November, whereas Firmicutes were predominant in December, especially at the middle and bottom depths. These results show that the composition of the microbial community is strongly associated with temporal changes. Furthermore, the community compositions were markedly different between the surface, middle, and bottom depths in summer, when water column stratification and bottom water hypoxia (low dissolved oxygen level) were strongly developed. Metagenomics data contribute to improving our understanding of important relationships between environmental characteristics and microbial community change in eutrophication-induced and deoxygenated coastal areas.


Sign in / Sign up

Export Citation Format

Share Document