scholarly journals Methane emission from hypersaline microbial mats: Lack of aerobic methane oxidation activity

1995 ◽  
Vol 16 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Ralf Conrad ◽  
Peter Frenzel ◽  
Yehuda Cohen
2012 ◽  
Vol 9 (10) ◽  
pp. 3891-3899 ◽  
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.


2008 ◽  
Vol 75 (1) ◽  
pp. 119-126 ◽  
Author(s):  
M. Rahalkar ◽  
J. Deutzmann ◽  
B. Schink ◽  
I. Bussmann

ABSTRACT The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.


Sign in / Sign up

Export Citation Format

Share Document