Diversity and geographical distribution of members of the Streptomyces violaceusniger 16S rRNA gene clade detected by clade-specific PCR primers

2007 ◽  
Vol 62 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Yashawant Kumar ◽  
Porntipa Aiemsum-ang ◽  
Alan C. Ward ◽  
Michael Goodfellow
1998 ◽  
Vol 64 (2) ◽  
pp. 795-799 ◽  
Author(s):  
Julian R. Marchesi ◽  
Takuichi Sato ◽  
Andrew J. Weightman ◽  
Tracey A. Martin ◽  
John C. Fry ◽  
...  

ABSTRACT We report the design and evaluation of PCR primers 63f and 1387r for amplification of 16S rRNA genes from bacteria. Their specificity and efficacy were tested systematically with a variety of bacterial species and environmental samples. They were found to be more useful for 16S rRNA gene amplification in ecological and systematic studies than PCR amplimers that are currently more generally used.


2004 ◽  
Vol 70 (7) ◽  
pp. 4088-4095 ◽  
Author(s):  
Kirsti M. Ritalahti ◽  
Frank E. Löffler

ABSTRACT 1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.


2007 ◽  
Vol 57 (3) ◽  
pp. 444-449 ◽  
Author(s):  
Minna Hannula ◽  
Marja-Liisa Hänninen

Analysis of 16S rRNA gene sequences is one of the most common methods for investigating the phylogeny and taxonomy of bacteria. However, several studies have indicated that the 16S rRNA gene does not distinguish between certain Helicobacter species. We therefore selected for phylogenetic analysis an alternative marker, gyrB, encoding gyrase subunit B. The aim of this investigation was to examine the applicability of gyrB gene fragments (~1100 bp) for the phylogenetic study of 16 Helicobacter species and a total of 33 Helicobacter strains included in this study. Based on the sequenced fragments, a phylogenetic tree was obtained that contained two distinct clusters, with gastric species forming one cluster and enterohepatic species the other. The only exception was the gastric species Helicobacter mustelae, which clustered with the enterohepatic species. The calculated similarity matrix revealed the highest interspecies similarity between Helicobacter salomonis and Helicobacter felis (89 %) and the lowest similarity between Helicobacter pullorum and H. felis (60 %). The DNA G+C content of the sequenced fragments was ⩽40 mol% in enterohepatic species and >46 mol% in gastric species, excluding Helicobacter pylori and H. mustelae, with G+C contents of 34 and 42 mol%, respectively. In summary, the gyrB gene fragments provided superior resolution and reliability to the 16S rRNA gene for differentiating between closely related Helicobacter species. A further outcome of this study was achieved by designing gyrB gene-based species-specific PCR primers for the identification of Helicobacter bizzozeronii.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 208-214 ◽  
Author(s):  
Lia W. Liefting ◽  
Paul W. Sutherland ◽  
Lisa I. Ward ◽  
Kerry L. Paice ◽  
Bevan S. Weir ◽  
...  

A new disease of glasshouse-grown tomato and pepper in New Zealand has resulted in plant decline and yield loss. Affected plants are characterized by spiky, chlorotic apical growth, curling or cupping of the leaves, and overall stunting. Transmission electron microscopy revealed the presence of phloem-limited bacterium-like organisms in symptomatic plants. The strategy used to identify the bacterium involved using specific prokaryote polymerase chain reaction (PCR) primers in combination with universal 16S rRNA primers. Sequence analysis of the 16S rRNA gene, the 16S/23S rRNA spacer region, and the rplKAJL-rpoBC operon revealed that the bacterium shared high identity with ‘Candidatus Liberibacter’ species. Phylogenetic analysis showed that the bacterium is distinct from the three citrus liberibacter species previously described and has been named ‘Candidatus Liberibacter solanacearum’. This is the first report of a liberibacter naturally infecting a host outside the Rutaceae family. A specific PCR primer pair was developed for its detection.


2010 ◽  
Vol 60 (4) ◽  
pp. 669-684 ◽  
Author(s):  
Nevzat Sahin ◽  
Anil Sazak ◽  
Kiymet Güven ◽  
Meral Dogramaci

2002 ◽  
Vol 68 (10) ◽  
pp. 5064-5081 ◽  
Author(s):  
Alexander Loy ◽  
Angelika Lehner ◽  
Natuschka Lee ◽  
Justyna Adamczyk ◽  
Harald Meier ◽  
...  

ABSTRACT For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 2039-2046 ◽  
Author(s):  
Joy E. M. Watts ◽  
Sonja K. Fagervold ◽  
Harold D. May ◽  
Kevin R. Sowers

Polychlorinated biphenyls (PCBs) accumulate and persist in sediments posing a risk to human health and the environment. Highly chlorinated PCBs are reductively dechlorinated in anaerobic sediments and two bacteria, designated o-17 and DF-1, from a novel phylogenetic group that reductively dechlorinate PCBs have recently been identified. However, there is a paucity of knowledge about the distribution, diversity and ecology of PCB-dechlorinating bacteria due to difficulty in obtaining pure cultures and the lack of detection by universal PCR 16S rRNA gene primer sets in sediments. A specific PCR primer was developed and optimized for detection of o-17/DF-1 and other closely related bacteria in the environment. Using this primer set it was determined that bacteria of this group were enriched in sediment microcosms from Baltimore Harbour concurrent with active dechlorination of 2,2′,3,4,4′,5′-hexachlorobiphenyl. Additional 16S rRNA gene sequences that had high levels of similarity to described PCB dechlorinators were detected in sediments from the Elizabeth River tributary of Chesapeake Bay, which had confirmed PCB-dechlorinating activities. Phylogenetic comparison of these detected 16S rRNA gene sequences revealed a relatively diverse group of organisms within the dehalogenating Chloroflexi that are distinct from the Dehalococcoides spp. Results from this study indicate that reductive PCB dechlorination activity may be catalysed by a previously undescribed group of micro-organisms that appear to be prevalent in PCB-impacted sites.


Sign in / Sign up

Export Citation Format

Share Document