scholarly journals Impact of trace element addition on biogas production from food industrial waste - linking process to microbial communities

2010 ◽  
Vol 74 (1) ◽  
pp. 226-240 ◽  
Author(s):  
Xin Mei Feng ◽  
Anna Karlsson ◽  
Bo H. Svensson ◽  
Stefan Bertilsson
2016 ◽  
Vol 47 ◽  
pp. 21-27 ◽  
Author(s):  
Erik Nordell ◽  
Britt Nilsson ◽  
Sören Nilsson Påledal ◽  
Kaisa Karisalmi ◽  
Jan Moestedt

2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


2014 ◽  
Vol 168 ◽  
pp. 80-85 ◽  
Author(s):  
Thomas Schmidt ◽  
Michael Nelles ◽  
Frank Scholwin ◽  
Jürgen Pröter

2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


Author(s):  
Roushney Fatima Mukti ◽  
Sanjida Sakhawat Sinthee

The complexity of the microbial communities and metabolic pathways involved in the microbiological process of biogas production is poorly understood and numerous microorganisms in the fermentation sample of the biogas plant are still unclassified or unknown. The structure and function of microbial communities and the effects of the addition of trace elements are needed to be known, to control and channel the energy sources microbes produce and to capture and store the useful by-products or for targeted screening of novel enzymes. In this review, we discussed an emerging idea that Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production. The composition and gene content of a biogas-producing consortium can be determined through metagenomic approach which allows the design of the optimal microbial community structure for any biogas plant for the significant progress in the efficacy and economic improvement of biogas production and biofertilizer of either balanced nutrition or rich in specific element for plant growth produced from the sludge of biogas plant. Biogas-producing microbial community from different production-scale biogas plants supplied with different raw materials as substrates can be analyzed by polyphasic approach to find out the best raw material composition for biogas production. The phylogenetic structure of the microbial community residing in a fermentation sample from a biogas plant can be analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Int. J. Appl. Sci. Biotechnol. Vol 7(1): 6-11


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3477
Author(s):  
Navodita Bhatnagar ◽  
David Ryan ◽  
Richard Murphy ◽  
Anne-Marie Enright

Anaerobic digestion (AD) of chicken litter (CL) is a viable alternative to disposal. However, methane yields from this primarily organic waste are quite low when mono-digested. This paper discusses the effect of an enzyme cocktail, trace element (TE) supplementation and selenium (Se) addition in small-scale batch biomethane potential (BMP) assays to enhance the AD of CL. Eleven different assays were set up in triplicate including assays containing only inoculum (blank), only CL (negative control) and cellulose and inoculum (positive control). The results indicate that both enzyme treatment and trace element supplementation enhanced the biogas and methane yield. The highest specific biogas and methane yields were noted for 1% enzyme-treated CL of 835.2 L/kg volatile solids (VS) and 460.8 L/kg VS, respectively. Usually, mono-digestion of CL is low due to high nitrogen content and the presence of recalcitrant lignocellulosic material from the bedding material. Enzyme treatment performed better than the addition of the TE mix and Se.


3 Biotech ◽  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ramansu Goswami ◽  
Pritam Chattopadhyay ◽  
Arunima Shome ◽  
Sambhu Nath Banerjee ◽  
Amit Kumar Chakraborty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document