CONDUCTION VELOCITY OF MOTOR NERVE FIBERS IN PROGRESSIVE SPINAL ATROPHY

1970 ◽  
Vol 46 (1) ◽  
pp. 119-122 ◽  
Author(s):  
J. Chaco
2021 ◽  
Vol 15 ◽  
Author(s):  
Qiong Cai ◽  
Guliqiemu Aimair ◽  
Wen-Xiao Xu ◽  
Pei-Yao Xiao ◽  
Lie-Hua Liu ◽  
...  

Objective: This study aimed to investigate how early A-waves could occur in type II diabetes, and what it implied functionally.Methods: We performed conduction velocity distribution (CVD) test in peroneal nerves of 37 type II diabetic patients with normal nerve conduction study (NCS) and 22 age-matched controls. The electrophysiological data and clinical information were analyzed.Results: A-waves were observed in 45.9% of diabetic patients and only in 1 person in healthy controls, all detected in the tibial nerves. The diabetic patients with A-waves showed faster conduction velocity in all quartiles in the motor peroneal nerves compared to the patients without A-waves, and their CVD histograms were shifted to the right side, consisting of a significantly larger percentage of fast conducting fibers. There was no significant difference in the CVD values of the upper extremity nerves among the patients with and without A-waves and the healthy controls.Conclusion: A-waves could occur in type II diabetes as early as when NCS showed normal, and represented as a sign of neuropathy as well as a sign of rescued motor nerve function.


1985 ◽  
Vol 69 (3) ◽  
pp. 183-200 ◽  
Author(s):  
Elis F. Stanley ◽  
John W. Griffin ◽  
Kenneth E. Fahnestock

2003 ◽  
Vol 95 (2) ◽  
pp. 577-583 ◽  
Author(s):  
Jianhua Li ◽  
Nicholas C. King ◽  
Lawrence I. Sinoway

Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636–H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 ± 2 and 16 ± 3 mmHg ( P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% ( P < 0.05) and 200% ( P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.


2020 ◽  
Vol 10 (4) ◽  
pp. 136-141
Author(s):  
Mohammed Salah Elmagzoub ◽  
Ahmed Hassan Ahmed ◽  
Hussam M A Hameed

Background: Nerve conduction studies (NCSs) help in delineating the extent distribution of neural lesion, and the diagnosis of peripheral nerve disorders. Because normative nerve conduction parameters were not yet established in Sudan EMG laboratories, this study aims towards having our own reference values, as we are using the American and British parameters. This will allow avoiding the discrepancies that might be induced by many factors. Methods: NCSs were performed in 200 Median nerves of 100 adult healthy Sudanese subjects using standardized techniques. Results: The median SNAP (sensory nerve action potential) values were as follows: distal latency, 2.6±3 ms with a range of (2.3-2.9); peak latency, 3.5±0.5 ms (3.0-4.0); amplitude, 47.7±18.0μV (29.7-65.7); conduction velocity, 53.0±7.8 m/s (45.2-60.8). The following values were obtained for the Median nerve CMAP (compound muscle action potential) at wrist stimulation: distal latency, 3.5±0.5 ms with a range of (3.0-4.0); peak latency, 9.4± 1.0 ms (8.4-10.4); duration, 5.9±0.9 ms (5.0-6.8); amplitude, 12.3±2.5 mV (9.8-14.8); area, 43.0±10.4 mVms (32.6-53.4); conduction velocity, 63.6±6.2 m/s (57.4-69.8). The F wave was 28.4±1.8 ms (26.6-30.2). Conclusion: The overall mean sensory and motor nerve conduction parameters for the tested nerve compared favorably with the existing literature with some discrepancies that were justified.


Sign in / Sign up

Export Citation Format

Share Document