A comparison of the level of resistance in diploid Triticum monococcum and hexaploid Triticum aestivum wheat seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi

1986 ◽  
Vol 109 (1) ◽  
pp. 173-177 ◽  
Author(s):  
N. J. SPILLER ◽  
M. LLEWELLYN
2018 ◽  
Vol 73 (3) ◽  
pp. 29-36
Author(s):  
ROBERT KRZYŻANOWSKI ◽  
IZABELA BEDNARCZYK ◽  
JOLANTA CUDZIŁO-ABRAMCZUK

Chlorophenoxyacetic herbicides such as 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4-dichlorophenoxyacetic acid (2,4-D) are used for cereal protection. However, some of them penetrate the tissues of protected plants and also get in contact with cereal pathogens. The up-to-date studies concerned their effectiveness in combating the weeds without paying attention to the herbivores occurring in cereal agrocenoses. Therefore, the aim of the present study was to determine the effect of chlorophenoxyacetic herbicides on the probing behavior of grain aphid, Sitobion avenae (F.), bird cherry-oat aphid, Rhopalosiphum padi (L.) and rose-grain aphid, Metopolophium dirhodum (Walk.). The experiment was carried out on wingless females feeding on winter wheat seedlings of Tonacja cv. using the electronic penetration graph (EPG) method. Tested herbicide preparations exerted an influence on the probing behavior of all aphids examined. The inhibitory effect of MCPA and 2,4-D on the uptake of phloem juice was found. It has been shown that chlorophenoxyacetic herbicides are not only effective in combating the weeds of cereal crops, but can also have positive side-effects in the form of limiting the cereal aphids population.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 329-336
Author(s):  
A.R. Lubyanova ◽  
F.M. Shakirova ◽  
M.V. Bezrukova

We studied the immunohistochemical localization of abscisic acid (ABA), wheat germ agglutinin (WGA) and dehydrins in the roots of wheat seedlings (Triticum aestivum L.) during 24-epibrassinolide-pretreatment (EB-pretreatment) and PEG-induced dehydration. It was found coimmunolocalization of ABA, WGA and dehydrins in the cells of central cylinder of basal part untreated and EB-pretreated roots of wheat seedlings under normal conditions and under osmotic stress. Such mutual localization ABA and protective proteins, WGA and dehydrins, indicates the possible effect of their distribution in the tissues of EB-pretreated wheat roots during dehydration on the apoplastic barrier functioning, which apparently contributes to decrease the water loss under dehydration. Perhaps, the significant localization of ABA and wheat lectin in the metaxylem region enhances EB-induced transport of ABA and WGA from roots to shoots under stress. It can be assumed that brassinosteroids can serve as intermediates in the realization of the protective effect of WGA and wheat dehydrins during water deficit.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Wedad A. Kasim ◽  
Mohamed E. H. Osman ◽  
Mohamed N. Omar ◽  
Samar Salama

Abstract Background The effectiveness of two PGPB; Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 was investigated in enhancing the drought tolerance of wheat (Triticum aestivum L.) seedlings cultivar Gemiza9. The inoculated or uninoculated grains were sown in unsterilized sandy soil and watered normally untill the 8th day. Drought stress was initiated by completely withholding water for 7 days (until wilting). Samples were collected after 15 days from sowing to evaluate some growth criteria, damage and defense indicators and to analyze the roots’ protein pattern. Results The results showed that inoculating wheat seedlings with these strains significantly diminished the inhibitory effects of drought stress on the relative water content of roots, shoots and leaves; area of leaves; contents of pigments (chlorophyll a and b) and ascorbic acid; and on the protein patterns of roots. Moreover, the bacterial inoculation notably reduced the drought-induced damage indicated by lower leakage of electrolytes and less accumulation of Malondialdehyde and hydrogen peroxide, surprisingly with less enhanced production of proline and activities of catalase and peroxidase than their uninoculated counterparts. Under normal conditions, inoculating wheat plants with these PGPB resulted in significantly promoted growth and elevated contents of pigments and altered protein patterns of roots. Conclusion Overall, we can say that both Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 were able to deactivate the growth inhibition in wheat seedlings to some extent, while maintaining a certain level of efficient protection against damage under drought stress.


2014 ◽  
Vol 11 (1) ◽  
pp. 71-77 ◽  
Author(s):  
S. Meziani ◽  
I. Nadaud ◽  
B. Gaillard-Martinie ◽  
C. Chambon ◽  
M. Benali ◽  
...  

Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 382-387 ◽  
Author(s):  
Barry M. Olson ◽  
Robert B. McKercher ◽  
Edward H. Halstead

Growth chamber studies using one soil investigated the effects of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.0, 0.4, and 0.8 ppmw on the root development and the mineral status of wheat (Triticum aestivumL. ‘Neepawa’) seedlings. The 0.8-ppmw trifluralin rate increased the number of seminal roots, reduced lateral root production, decreased root extension, caused root tips to swell (club-like appearance), and reduced root dry weights. However, 0.4-ppmw trifluralin caused only slight damage to the seedlings. Towards the end of the two-week growth period, damaged seedlings showed signs of recovery, which included an increased number of seminal roots, development of normal root extensions from clubbed root tips, and development of normal lateral root patterns. Trifluralin increased percent calcium and magnesium and decreased percent nitrogen, phosphorus, and potassium in wheat plants. The nutrient concentrations were more affected in 21-day-old plants than in 35-day-old plants, indicating the wheat seedlings were able to recover from trifluralin injury.


2011 ◽  
Vol 39 (No. 2) ◽  
pp. 61-64 ◽  
Author(s):  
V. Jarošík ◽  
A. Honěk ◽  
A. Tichopád

Population growths of three aphid species colonising winter wheat stands, Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae, were analysed by regression method. The calculations were based on counts in 268 winter wheat plots at 3 or 7 day intervals over 10 (leaves) or 6 (ears) years. The population dynamics of a particular species differed widely between years. Density independent exponential growth of the population was most common, but its rate differed significantly between species, and for S. avenae also between populations on leaves and ears, on which the populations grew fastest. Field estimates of the intrinsic rate of increase derived from the exponential growths ranged between 0.010–0.026 in M. dirhodum, 0.0071–0.011 in R. padi, and between 0.00078–0.0061 and 0.0015–0.13 in S. avenae on leaves and ears, respectively. In the populations with the most vigorous population growth, S. avenae on ears and M. dirhodum on leaves, the rate of population increase significantly decreased with increasing aphid density.  


Sign in / Sign up

Export Citation Format

Share Document