Studies on a Nigerian isolate of banana streak badnavirus: II. Effect of intraplant variation on virus accumulation and reliability of diagnosis by ELISA

1998 ◽  
Vol 132 (2) ◽  
pp. 263-275 ◽  
Author(s):  
G. DAHAL ◽  
C. PASBERG-GAUHL ◽  
F. GAUHL ◽  
G. THOTTAPPILLY ◽  
J d'A HUGHES
Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 657-662 ◽  
Author(s):  
William M. Wintermantel ◽  
Stephen R. Kaffka

Resistance to curly top disease caused by Beet curly top virus (BCTV) and related curtoviruses has been important to sustainable sugar beet (Beta vulgaris) production in the western United States for most of the last century. Recent advances in sugar beet genetics have led to the development of high-yielding cultivars, but these cultivars have little resistance to curly top disease. These cultivars are highly effective when disease management practices or environmental factors minimize curly top incidence, but can result in significant losses in years with early infection or abundant curly top. A greenhouse assay has been developed to rapidly test cultivars for a broad array of factors affecting performance in the presence of curly top. Previous studies have shown that sugar beet plants were more susceptible and losses more severe when seedlings were infected by BCTV, but less severe when plants were larger at the time of infection. To evaluate more precisely the relationship between age at infection, disease severity, virus accumulation, and yield loss in modern cultivars that were not bred for curly top resistance, individual sugar beet plants varying in degree of resistance and susceptibility to curly top were inoculated by viruliferous beet leafhoppers (Circulifer tenellus) when plants had two, four, or six true leaves, and maintained in a greenhouse for 6 weeks. When plants were inoculated at the two-leaf stage, all cultivars became severely stunted, with high disease ratings and similar rates of symptom development, regardless of resistance or susceptibility of the cultivar. Plants inoculated at four-and six-leaf stages exhibited increasing separation between resistant and susceptible phenotypes, with highly resistant cultivars performing well with low disease ratings and increased plant weights relative to susceptible cultivars. High-yielding cultivars performed only slightly better than the susceptible control cultivar. Results from greenhouse trials matched those from field trials conducted under heavy curly top pressure. Importantly, low virus concentration was directly correlated with lower disease ratings and higher plant weight, while elevated virus concentrations corresponded to higher disease ratings and lower weights. This demonstrates that a rapid greenhouse assay involving multiple traits can provide a rapid and effective means of selecting cultivars with improved curly top control, and could lead to more rapid incorporation of resistance into high-yielding sugar beet.


2020 ◽  
Vol 8 (12) ◽  
pp. 2038
Author(s):  
Neda Khoshkhatti ◽  
Omid Eini ◽  
Davoud Koolivand ◽  
Antreas Pogiatzis ◽  
John N. Klironomos ◽  
...  

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.


2007 ◽  
Vol 97 (4) ◽  
pp. 412-420 ◽  
Author(s):  
Shinya Tsuda ◽  
Kenji Kubota ◽  
Ayami Kanda ◽  
Takehiro Ohki ◽  
Tetsuo Meshi

Pepper mild mottle virus (PMMoV) infects pepper plants, causing mosaic symptoms on the upper developing leaves. We investigated the relationship between a virus pathogenicity determinant domain and the appearance of mosaic symptoms. Genetically modified PMMoV mutants were constructed, which had a base substitution in the 130K replication protein gene causing an amino acid change or a truncation of the 3′ terminal pseudoknot structure. Only one substitution mutant (at amino acid residue 349) failed to cause symptoms, although its accumulation was relatively high. Conversely, the pseudoknot mutants showed the lower accumulation, but they still caused mosaic symptoms as severe as the wild-type virus. Therefore, the level of virus accumulation in a plant does not necessarily correlate with the development of mosaic symptoms. The activity to suppress posttranscriptional gene silencing (PTGS) was impaired in the asymptomatic mutant. Consequently, pathogenicity causing mosaic symptoms should be controlled by combat between host PTGS and its suppression by the 130K replication protein rather than virus accumulation.


1999 ◽  
Vol 79 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Glyn Harper ◽  
Ganesh Dahal ◽  
George Thottappilly ◽  
R. Hull

Sign in / Sign up

Export Citation Format

Share Document