A COMPARISON OF SEVEN PREFERENCE MAPPING TECHNIQUES USING FOUR SOFTWARE PROGRAMS

2011 ◽  
Vol 26 (2) ◽  
pp. 135-150 ◽  
Author(s):  
RENOO YENKET ◽  
EDGAR CHAMBERS IV ◽  
KOUSHIK ADHIKARI
2010 ◽  
Vol 21 (3) ◽  
pp. 286-294 ◽  
Author(s):  
Gastón Ares ◽  
Ana Giménez ◽  
Cecilia Barreiro ◽  
Adriana Gámbaro

2011 ◽  
Vol 3 (1) ◽  
pp. 80
Author(s):  
Alexander Feldman ◽  
Jonathan M Kalman ◽  
◽  

Focal atrial tachycardia (AT) is a relatively uncommon cause of supraventricular tachycardia, but when present is frequently difficult to treat medically. Atrial tachycardias tend to originate from anatomically determined atrial sites. The P-wave morphology on surface electrocardiogram (ECG) together with more sophisticated contemporary mapping techniques facilitates precise localisation and ablation of these ectopic foci. Catheter ablation of focal AT is associated with high long-term success and may be viewed as a primary treatment strategy in symptomatic patients.


2018 ◽  
Author(s):  
Grigore Moldovan ◽  
Wolfgang Joachimi ◽  
Guillaume Boetsch ◽  
Jörg Jatzkowski ◽  
Frank Altman

Abstract This work presents advanced resistance mapping techniques based on Scanning Electron Microscopy (SEM) with nanoprobing systems and the related embedded electronics. Focus is placed on recent advances to reduce noise and increase speed, such as integration of dedicated in situ electronics into the nanoprobing platform, as well as an important transition from current-sensitive to voltagesensitive amplification. We show that it is now possible to record resistance maps with a resistance sensitivity in the 10W range, even when the total resistance of the mapped structures is in the range of 100W. A reference structure is used to illustrate the improved performance, and a lowresistance failure case is presented as an example of analysis made possible by these developments.


Sign in / Sign up

Export Citation Format

Share Document