THE SIGNIFICANCE OF STRIKE-SLIP FAULTING IN THE BASEMENT OF THE ZAGROS FOLD AND THRUST BELT

2001 ◽  
Vol 24 (1) ◽  
pp. 5-28 ◽  
Author(s):  
K. Hessami ◽  
H. A. Koyi ◽  
C. J. Talbot
2020 ◽  
Author(s):  
Saskia Köhler ◽  
Florian Duschl ◽  
Hamed Fazlikhani ◽  
Daniel Köhn

<p>The Franconian Basin in SE Germany has seen a complex stress history indicative of several extensional and compressional phases e.g. the Iberia-Europe collision acting on a pre-faulted Variscan basement. Early Cretaceous extension is followed by Late Cretaceous inversion with syntectonic sedimentation and deformation increasing progressively from SW to NE culminating in the Franconian Line where basement rocks are thrusted over the Mesozoic cover. The development of this intracontinental fold-and-thrust belt is followed by Paleogene extension associated with the formation of the Eger Graben, which is then succeeded by a new compressional event as a consequence of the Alpine orogeny.</p><p>We use existing data from literature and geological maps and new field data to construct balanced cross-sections in order to reveal the architecture of the Cretaceous fold-and-thrust belt. In addition, we undertake paleostress analysis using a combination of fault slip information, veins and tectonic and sedimentary stylolites to identify stress events in the study area, as well as their nature and timing. Furthermore, we try to understand how basement faults influence younger faults in the cover sequence.</p><p>Our paleostress data indicates that at least five different stress events existed in Mesozoic to Cenozoic times (from old to young): (1) an N-S directed extensional stress field with E-W striking normal faults, (2) a NNE-SSW directed compressional stress field causing thrusting and folding of the cover sequence, (3) a strike slip regime with NE-SW compression and NW-SE extension, (4) an extensional event with NW-SE extension and the formation of ENE-WSW striking faults according to the formation of the Eger Graben in the E, and finally (5) a strike slip regime with NW-SE compression and NE-SW extension related to Alpine stresses. The geometry of faulting and deformation varies significantly over the regions with respect to the influence of and distance to inherited Variscan structures.</p><p>We argue that the extensional event of stress field (1) provides spacing for Early Cretaceous sedimentation in the Franconian Basin. This is followed by the creation of an intracontinental fold-and-thrust belt during stress fields (2) and (3) with a slight rotation of the main compressive stress during these events in Late Cretaceous. We associate the following extension to the development of the Eger Graben in Miocene time. Finally, a NW-SE directed compression related to Alpine stresses in an intracontinental strike-slip regime is following. Reconstruction of the Cretaceous fold-and-thrust belt reveals mainly fault propagation folding with deep detachments sitting below the cover sequence indicating thick-skinned tectonics. We argue that the Franconian Line is a thrust with a steeply dipping root that belongs to the same fold-and-thrust belt.</p>


2009 ◽  
Vol 178 (1) ◽  
pp. 524-540 ◽  
Author(s):  
Christine Authemayou ◽  
Olivier Bellier ◽  
Dominique Chardon ◽  
Lucilla Benedetti ◽  
Zaman Malekzade ◽  
...  

2010 ◽  
Vol 61 (6) ◽  
pp. 483-493 ◽  
Author(s):  
Márton Palotai ◽  
László Csontos

Strike-slip reactivation of a Paleogene to Miocene fold and thrust belt along the central part of the Mid-Hungarian Shear ZoneRecently shot 3D seismic data allowed for a detailed interpretation, aimed at the tectonic evolution of the central part of the Mid-Hungarian Shear Zone (MHZ). The MHZ acted as a NW vergent fold and thrust belt in the Late Oligocene. The intensity of shortening increased westwards, causing clockwise rotation of the western regions, relatively to the mildly deformed eastern areas. Blind thrusting and related folding in the MHZ continued in the Early Miocene. Thrusting and gentle folding in the MHZ partly continued in the earliest Pannonian, and was followed by sinistral movements in the whole MHZ, with maximal displacement along the Tóalmás zone. Late Pannonian inversion activated thrusts and generated transpressional movements along the Tóalmás zone.


2019 ◽  
Author(s):  
Danielle N. Woodring ◽  
◽  
Andrew Meigs ◽  
Marina Marcelli ◽  
Jim E. O'Connor ◽  
...  

2020 ◽  
Vol 55 (9) ◽  
pp. 6079-6097
Author(s):  
Jorge G. Lozano ◽  
Donaldo M. Bran ◽  
Javier I. Peroni ◽  
Emanuele Lodolo ◽  
Marco Menichetti ◽  
...  

2016 ◽  
Vol 153 (5-6) ◽  
pp. 1166-1191 ◽  
Author(s):  
KENN-MING YANG ◽  
RUEY-JUIN RAU ◽  
HAO-YUN CHANG ◽  
CHING-YUN HSIEH ◽  
HSIN-HSIU TING ◽  
...  

AbstractIn the foreland area of western Taiwan, some of the pre-orogenic basement-involved normal faults were reactivated during the subsequent compressional tectonics. The main purpose of this paper is to investigate the role played by the pre-existing normal faults in the recent tectonics of western Taiwan. In NW Taiwan, reactivated normal faults with a strike-slip component have developed by linkage of reactivated single pre-existing normal faults in the foreland basin and acted as transverse structures for low-angle thrusts in the outer fold-and-thrust belt. In the later stage of their development, the transverse structures were thrusted and appear underneath the low-angle thrusts or became tear faults in the inner fold-and-thrust belt. In SW Taiwan, where the foreland basin is lacking normal fault reactivation, the pre-existing normal faults passively acted as ramp for the low-angle thrusts in the inner fold-and-thrust belt. Some of the active faults in western Taiwan may also be related to reactivated normal faults with right-lateral slip component. Some main earthquake shocks related to either strike-slip or thrust fault plane solution occurred on reactivated normal faults, implying a relationship between the pre-existing normal fault and the triggering of the recent major earthquakes. Along-strike contrast in structural style of normal fault reactivation gives rise to different characteristics of the deformation front for different parts of the foreland area in western Taiwan. Variations in the degree of normal fault reactivation also provide some insights into the way the crust embedding the pre-existing normal faults deformed in response to orogenic contraction.


2021 ◽  
Author(s):  
Marco Mercuri ◽  
Eugenio Carminati ◽  
Luca Aldega ◽  
Fabio Trippetta

<p>Faults and fractures play a key role in the permeability of the upper crust. Since anticlines represent very common structural traps for fluids, geometrical (i.e., orientation, length distribution) and topological (i.e., cross-cutting and abutting relationships, intensity) characterization of their fracture network is crucial to assess the migration and accumulation of fluids for CO<sub>2</sub> sequestration or hydrocarbon exploitation purposes. For this reason, many previous studies focused on anticlines worldwide, and in particular on the Zagros fold-and-thrust belt where they represent the outcropping analogs of oil fields in SW Iran.</p><p>The Zagros fold-and-thrust belt involve sediments of the pre-collisional Arabian plate passive margin, arranged in folds elongated in a NW-SE direction and tectonic transport toward SW. The belt is dissected by N-S dextral strike slip transfer faults reactivating former rift-related normal faults. Most of the studies on fracturing in the Zagros belt are based on fracture orientation data collected mainly in the field, or alternatively coming from satellite images, and deal with the origin of fracture sets (fold-related or not). Although two of the classical fold-related sets, oriented roughly parallel and perpendicular to fold axis (i.e., NW-SE and NE-SW striking respectively) can be generally recognized everywhere in the belt, other fracture orientation (e.g., N-S and E-W striking) are locally predominant and there is still no consensus on the nature of all fracture sets. For example, the role of the strike-slip reactivation of N-S and E-W striking inherited faults on fracture set distribution is still not clear.</p><p>In this study we leverage on high quality Bing Maps satellite images of the Zagros anticlines and on scanlines performed in the field to provide a multiscale investigation of geometry and topology of the fracture network affecting three anticlines, namely Sim, Kuh-e-Asmari, and Kuh-e-Sarbalesh. The three anticlines have similar dimensions and are variably affected by ~N-S striking dextral strike slip tectonic lineaments. In particular, Kuh-e-Asmari and Sim anticlines are located ~10km far from the Izeh and Sabz-Pushan faults respectively, whilst the Kuh-e-Sarbalesh anticline is characterized by an evident drag in map view against the Kazerun fault.</p><p>We manually interpreted the fracture network on satellite images at different scales (1:100 to 1:100.000), producing fracture maps with resolution ranging from 10m to 1km. Each fracture map was then analyzed using the NetworkGT plugin in QGIS. In particular, we were able to identify fracture sets, their spatial distribution and, were possible, the topology of the fracture network. In this framework, scanlines performed in the field represent punctual observations at furtherly higher resolution (~1 cm). Following the same procedure for the three anticlines enables us to test the role of N-S faults on fracture set distribution at various scales.</p><p>With such a multiscale approach we provide a “big picture” that can help to shed light on the nature and distribution of the various fracture sets in the anticlines of the Zagros belt. Moreover, fracture sets identified at different scales in this study can be used to better interpret previous and future fracture data collected in the field.</p>


Sign in / Sign up

Export Citation Format

Share Document