Reuptake and Net Uptake of Noradrenaline in Adrenergic Nerve Granules with a Note on the Affinity for l- and d-Isomers

1967 ◽  
Vol 71 (2-3) ◽  
pp. 151-162 ◽  
Author(s):  
U. S. von Euler ◽  
F. Lishajko
2013 ◽  
Vol 119 (1) ◽  
pp. 156-165 ◽  
Author(s):  
Mauro R. Tucci ◽  
Eduardo L. V. Costa ◽  
Tyler J. Wellman ◽  
Guido Musch ◽  
Tilo Winkler ◽  
...  

Abstract Background: Lung derecruitment is common during general anesthesia. Mechanical ventilation with physiological tidal volumes could magnify derecruitment, and produce lung dysfunction and inflammation. The authors used positron emission tomography to study the process of derecruitment in normal lungs ventilated for 16 h and the corresponding changes in regional lung perfusion and inflammation. Methods: Six anesthetized supine sheep were ventilated with VT = 8 ml/kg and positive end-expiratory pressure = 0. Transmission scans were performed at 2-h intervals to assess regional aeration. Emission scans were acquired at baseline and after 16 h for the following tracers: (1) 18F-fluorodeoxyglucose to evaluate lung inflammation and (2) 13NN to calculate regional perfusion and shunt fraction. Results: Gas fraction decreased from baseline to 16 h in dorsal (0.31 ± 0.13 to 0.14 ± 0.12, P < 0.01), but not in ventral regions (0.61 ± 0.03 to 0.63 ± 0.07, P = nonsignificant), with time constants of 1.5–44.6 h. Although the vertical distribution of relative perfusion did not change from baseline to 16 h, shunt increased in dorsal regions (0.34 ± 0.23 to 0.63 ± 0.35, P < 0.01). The average pulmonary net 18F-fluorodeoxyglucose uptake rate in six regions of interest along the ventral–dorsal direction increased from 3.4 ± 1.4 at baseline to 4.1 ± 1.5⋅10−3/min after 16 h (P < 0.01), and the corresponding average regions of interest 18F-fluorodeoxyglucose phosphorylation rate increased from 2.0 ± 0.2 to 2.5 ± 0.2⋅10−2/min (P < 0.01). Conclusions: When normal lungs are mechanically ventilated without positive end-expiratory pressure, loss of aeration occurs continuously for several hours and is preferentially localized to dorsal regions. Progressive lung derecruitment was associated with increased regional shunt, implying an insufficient hypoxic pulmonary vasoconstriction. The increased pulmonary net uptake and phosphorylation rates of 18F-fluorodeoxyglucose suggest an incipient inflammation in these initially normal lungs.


1991 ◽  
Vol 140 (4) ◽  
pp. 369-372 ◽  
Author(s):  
J. Koistinaho

1980 ◽  
Vol 239 (6) ◽  
pp. H713-H720 ◽  
Author(s):  
E. Muscholl

Activation of muscarinic cholinergic receptors located at the terminal adrenergic nerve fiber inhibits the process of exocytotic norepinephrine (NE) release. This neuromodulatory effect of acetylcholine and related compounds has been discovered as a pharmacological phenomenon. Subsequently, evidence for a physiological role of the presynaptic muscarinic inhibition was obtained on organs known to be innervated by the autonomic ground plexus (Hillarp, Acta. Physiol. Scand. 46, Suppl. 157: 1-68, 1959) in which terminal adrenergic and cholinergic axons run side by side. Thus, in the heart electrical vagal stimulation inhibits the release of NE evoked by stimulation of sympathetic nerves, and this is reflected by a corresponding decrease in the postsynaptic adrenergic response. On the other hand, muscarinic antagonists such as atropine enhance the NE release evoked by field stimulation of tissues innervated by the autonomic ground plexus. The presynaptic muscarine receptor of adrenergic nerve terminals probably restricts the influx of calcium ions that triggers the release of NE. However, the sequence of events between recognition of the muscarinic compound by the receptor and the process of exocytosis still remains to be clarified.


Author(s):  
C.J. Seal ◽  
D.S. Parker ◽  
J.C. MacRae ◽  
G.E. Lobley

Amino acid requirements for energy metabolism and protein turnover within the gastrointestinal tract are substantial and may be met from luminal and arterial pools of amino acids. Several studies have demonstrated that the quantity of amino acids appearing in the portal blood does not balance apparent disappearance from the intestinal lumen and that changing diet or the availability of energy-yielding substrates to the gut tissues may influence the uptake of amino acids into the portal blood (Seal & Reynolds, 1993). For example, increased net absorption of amino acids was observed in animals receiving exogenous intraruminal propionate (Seal & Parker, 1991) and this was accompanied by changes in glucose utilisation by the gut tissues. In contrast, there was no apparent change in net uptake of [l-13C]-leucine into the portal vein of sheep receiving short term intraduodenal infusions of glucose (Piccioli Cappelli et al, 1993). This experiment was designed to further investigate the effects on amino acid absorption of changing glucose availability to the gut with short term (seven hours) or prolonged (three days) exposure to starch infused directly into the duodenum.


Sign in / Sign up

Export Citation Format

Share Document